Implicit differentiation problem

Click For Summary
SUMMARY

The forum discussion centers on the implicit differentiation problem defined by the equation ##x\sqrt{1+y} + y\sqrt{1+x} = 0##. Participants explore the necessary steps to prove that ##\frac{dy}{dx} = \frac{-1}{(1+x)^2}##, emphasizing the use of implicit differentiation rather than partial derivatives. A key insight is the transformation of the original equation to eliminate the variable ##y##, leading to a clearer path for differentiation. The final result confirms the required derivative after correcting initial misunderstandings regarding the equation's manipulation.

PREREQUISITES
  • Understanding of implicit differentiation techniques
  • Familiarity with calculus concepts, particularly derivatives
  • Knowledge of algebraic manipulation involving square roots
  • Ability to interpret and manipulate equations involving multiple variables
NEXT STEPS
  • Study implicit differentiation methods in calculus
  • Practice algebraic manipulation of equations with square roots
  • Explore the application of the chain rule in differentiation
  • Review examples of proving derivatives from implicit functions
USEFUL FOR

Students and educators in calculus, mathematicians dealing with implicit functions, and anyone seeking to enhance their understanding of differentiation techniques in multivariable contexts.

IonizingJai
Messages
14
Reaction score
0

Homework Statement


If ##x\sqrt{1+y} + y\sqrt{1+x } = 0##, then prove that ##\frac {dy} {dx} = \frac {-1}{(x-1)^2}##.

2.Relevant Equations:
$$ \frac {dy} {dx} =
- \frac {\left (\frac {\partial f}{\partial x} \right)} {\left( \frac {\partial f} {\partial y} \right)}.$$
3. The Attempt at a Solution :

Given expression : ##x\sqrt{1+y} + y\sqrt{1+x } = 0##, let's call it ##f(x)##.
Now, finding partial derivatives of ##f(x)## w.r.t x and y.
$$\frac {\partial f} {\partial x} = \sqrt{1+y} + \frac y {2\sqrt{1+x}}.$$

$$\frac {\partial f} {\partial y} = \frac x {2\sqrt{1+y}} + \sqrt{1+x}.$$
Now,
$$ \frac {dy} {dx} =
- \frac {\left (\frac {\partial f}{\partial x} \right)} {\left( \frac {\partial f} {\partial y} \right)}.$$
$$= - \frac {\left( \frac { 2\sqrt{1+x}\sqrt{1+y}~+y }{ 2\sqrt{1+x} } \right) } {\left( \frac { 2\sqrt{1+x}\sqrt{1+y}+~x }{ 2\sqrt{1+y} } \right)}$$

I'm stuck here. Since I don't know what should I do to get to the required result.
 
Physics news on Phys.org
You have not used the given fact that ##f(x,y)=0## so far. I am sure there is some clever substitution that will allow you to eliminate the ##y## variable.
 
IonizingJai said:

Homework Statement


If ##x\sqrt{1+y} + y\sqrt{1+x } = 0##, then prove that ##\frac {dy} {dx} = \frac {-1}{(x-1)^2}##.
Your thread title says that this is an implicit differentiation problem. Why don't you do it that way?
Just take the derivative with respect to x of each term on the left side of your equation. There is no need for partial derivatives, as the assumption in implicit differentiation is that, in this case, y is a differentiable function of x.

Also, this is a purely math problem, so I am moving it to the calculus section.
IonizingJai said:
2.Relevant Equations:
$$ \frac {dy} {dx} =
- \frac {\left (\frac {\partial f}{\partial x} \right)} {\left( \frac {\partial f} {\partial y} \right)}.$$
3. The Attempt at a Solution :

Given expression : ##x\sqrt{1+y} + y\sqrt{1+x } = 0##, let's call it ##f(x)##.
Now, finding partial derivatives of ##f(x)## w.r.t x and y.
$$\frac {\partial f} {\partial x} = \sqrt{1+y} + \frac y {2\sqrt{1+x}}.$$

$$\frac {\partial f} {\partial y} = \frac x {2\sqrt{1+y}} + \sqrt{1+x}.$$
Now,
$$ \frac {dy} {dx} =
- \frac {\left (\frac {\partial f}{\partial x} \right)} {\left( \frac {\partial f} {\partial y} \right)}.$$
$$= - \frac {\left( \frac { 2\sqrt{1+x}\sqrt{1+y}~+y }{ 2\sqrt{1+x} } \right) } {\left( \frac { 2\sqrt{1+x}\sqrt{1+y}+~x }{ 2\sqrt{1+y} } \right)}$$

I'm stuck here. Since I don't know what should I do to get to the required result.
 
  • Like
Likes   Reactions: scottdave
Are you sure that this is true ?
IonizingJai said:
dydx=−(∂f∂x)(∂f∂y)
dy/dx tells us to derive the function y=f(x) with respect to x.
 
Porkaborg said:
Are you sure that this is true ?

dy/dx tells us to derive the function y=f(x) with respect to x.
Yes, the equation as stated in post #1 is correct.

If ##f(x, y) = 0##, the the total differentials of both sides have to be equal.
##\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = d(0) = 0##
##\Rightarrow \frac{\partial f}{\partial y}dy = -\frac{\partial f}{\partial x}dx##
##\Rightarrow \frac{dy}{dx} = -\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}##

IMO, though, partials are overkill in this problem, but using ordinary implicit differentiation still ends up with a messy answer that doesn't look like what is supposed to be proved.
 
  • Like
Likes   Reactions: Porkaborg
You can move one radical in the given expression to the other side, square, solve the quadratic for ##y## and throw out the solution that does not satisfy the given expression. Then just take the derivative of the good solution as @Mark44 suggested. I don't agree that it's messy, but I agree that you don't get the answer that you are asked to show.
 
kuruman said:
I don't agree that it's messy, but I agree that you don't get the answer that you are asked to show.
That's pretty much what I meant by calling it "messy."
 
I would do what kuruman suggests only if I had to. As you are invited to get rid of y, and as what causes most of he trouble in this sort of calculation are √ terms, I would start by applying your first equation in 1.
##x\sqrt{1+y} + y\sqrt{1+x } = 0##
not even to your equation for dy/dx but better to

IonizingJai said:
$$\frac {\partial f} {\partial x} = \sqrt{1+y} + \frac y {2\sqrt{1+x}}.$$

$$\frac {\partial f} {\partial y} = \frac x {2\sqrt{1+y}} + \sqrt{1+x}.$$
to get rid of √(1 +y) and see where that leads you.
 
Or another idea. Get rid of square root terms in the original equation 1 and then do the implicit differentiation.
 
  • #10
kuruman said:
You have not used the given fact that ##f(x,y)=0## so far. I am sure there is some clever substitution that will allow you to eliminate the ##y## variable.
Thanks to all who replied.

Here's what I did, as kuruman suggested,
First, covert given expression to
$$\frac {x} {y} = -\frac{\sqrt{1+x}}{\sqrt{1+y}} $$
Then, squaring b/s we get, ##\frac {x^2} {y^2} = -\frac{1+x}{1+y}##, manupulating expression to get , ## x+ y +xy = 0##.
$$ y = -\frac{x}{1+x}$$ .
Applying condition ##\frac{1-x}{1-y} \gt 0## we get ##x\gt -1##.
(I have further doubt here, wherther to apply condition for ##\frac {x} {y} = -\frac{\sqrt{1+x}}{\sqrt{1+y}} ## or substitute for y in x in the given expression ##
x\sqrt{1+y} + y\sqrt{1+x } = 0
## in order to throw out the intervals in which the parent equation becomes invalid. )
Anyway, we diffrentiate the equation ## y = -\frac{x}{1+x}## to get ##\frac{dy}{dx}## and the result as required.
 
  • #11
IonizingJai said:
Anyway, we diffrentiate the equation ## y = -\frac{x}{1+x}## to get ##\frac{dy}{dx}## and the result as required.
##\frac{dy}{dx} = -\frac{1}{(1+x)^2}##, and the problem said
prove that ##
\frac {dy} {dx} = \frac {-1}{(x-1)^2}##
 
  • #12
ehild said:
##\frac{dy}{dx} = -\frac{1}{(1+x)^2}##, and the problem said

Sorry, I made the mistake in OP and it went unnoticed even after I gave it a check, I find writing LaTeX code difficult, apologies for any time waste, my mistake might have caused.

I will edit the OP, okay?
Looks like there is no option to edit the post.

so, I will post it here:
EDIT : the required result was ##\frac{dy}{dx} = -\frac{1}{(1+x)^2}##.
 
  • #13
IonizingJai said:
EDIT : the required result was ##\frac{dy}{dx} = -\frac{1}{(1+x)^2}##.
All is clear now :smile:
 
  • #14
IonizingJai said:
$$\frac {x} {y} = -\frac{\sqrt{1+x}}{\sqrt{1+y}} $$
Then, squaring b/s we get, ##\frac {x^2} {y^2} = -\frac{1+x}{1+y}##
If you square ## -\frac{\sqrt{1+x}}{\sqrt{1+y}}##, you get ##\frac{1+x}{1+y}##, not ##-\frac{1+x}{1+y}##.
 
  • #15
IonizingJai said:
$$ y = -\frac{x}{1+x}$$ .
Applying condition ##\frac{1-x}{1-y} \gt 0## we get ##x\gt -1##.
(I have further doubt here, wherther to apply condition for ##\frac {x} {y} = -\frac{\sqrt{1+x}}{\sqrt{1+y}} ## or substitute for y in x in the given expression ##
x\sqrt{1+y} + y\sqrt{1+x } = 0
## in order to throw out the intervals in which the parent equation becomes invalid. )
x>-1 and y-1 should hold otherwise you get zero or negative number under the square roots.
y=-x/(1+x) = -1+1/(x+1) . Is it true that y>-1 whenever x>-1?
 
  • #16
Oh no, I just realized I have made so many mistakes while writing out the reply.
Mark44 said:
If you square ## -\frac{\sqrt{1+x}}{\sqrt{1+y}}##, you get ##\frac{1+x}{1+y}##, not ##-\frac{1+x}{1+y}##.

Correct.

EDIT: the condition is ##\frac {1+x} {1+y} \gt 0 ##.

Still, not fully clear on inequality/condition part.
 
  • #17
IonizingJai said:
EDIT: the condition is ##\frac {1+x} {1+y} \gt 0 ##.

Still, not fully clear on inequality/condition part.

What condition ? (1+x)/(1+y) is always greater than zero if y=-x/(1+x) . Is it possible that x=-10, for example?
The starting equation is valid only when the expressions under the square roots are not negative, that is, both x>-1 and y>-1 must hold.
You can choose x>-1, prove that then y>-1.
Your solution can be rewritten as
y=-x/(1+x) = -1+1/(x+1) . Is it true that y>-1 whenever x>-1?
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K