MHB Implicit Functions: How Can Derivatives Be Calculated?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Implicit
Click For Summary
The discussion focuses on calculating derivatives of implicitly defined functions using the implicit function theorem. It establishes that if a function \( y(x) \) is defined by \( G(x, y(x)) = 0 \), then the derivative can be expressed as \( \frac{dy}{dx} = -\frac{\frac{\partial G}{\partial x}}{\frac{\partial G}{\partial y}} \) when \( \frac{\partial G}{\partial y} \neq 0 \). The participants explore the implications of this theorem and discuss the necessity of certain substitutions in their derivations. They also consider extending this to multiple implicit functions defined by two equations, \( G_1 \) and \( G_2 \), leading to a system of equations for the derivatives. The final suggestion is to simplify the simultaneous equations to derive a clearer formula for \( \frac{dy_1}{dx} \).
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $y(x)$ be defined implicitly by $G(x,y(x))=0$, where $G$ is a given two-variable function. Show that if $y(x)$ and $G$ are differentiable, then $$\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}} , \text{ if } \frac{\partial{G}}{\partial{y}} \neq 0$$
First of all, what does it mean that $y(x)$ is defined implicitly by $G(x,y(x))=0$ ?? (Wondering) I have done the following:

Let $f(x)=x$. Then $G(x,y(x))=G(f(x), y(x))=H(x)$.

We have that $G(x,y(x))=0 \Rightarrow H(x)=0$.

$H(x)=0 \Rightarrow \frac{H(x)}{dx}=0$

From the chain rule we have the following:

$$\frac{H(x)}{dx}=\frac{\partial{G}}{\partial{f}}\frac{df}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}\frac{dx}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow \frac{\partial{G}}{\partial{y}}\frac{dy}{dx}=-\frac{\partial{G}}{\partial{x}} \\ \overset{ \text{ if } \frac{\partial{G}}{\partial{y}}\ \neq 0 }{\Longrightarrow }\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}}$$

Is this correct ?? Could I improve something ?? Is the substitution $f(x)=x$ necessary?? (Wondering)



Then I have to find a similar formula if $y_1$, $y_2$ are defined implicitly by $$G_1(x, y_1(x), y_2(x))=0 \\ G_2(x, y_1(x), y_2(x))=0$$

I have the following:

From the chain we have the following:

$$\frac{dG_1}{dx}=\frac{\partial{G_1}}{\partial{x}} \frac{dx}{dx}+\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow 0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx}$$

Similar, we get $$0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}$$

Is it correct so far??

How could I continue ?? (Wondering)
 
Physics news on Phys.org
We have that $$0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} -\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \ \ \ \ (*) \\ 0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow \frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}=-\frac{\partial{G_2}}{\partial{x}} -\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx} \\ \Rightarrow \frac{dy_2}{dx}=-\frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \\ (*) \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \Rightarrow \frac{dy_1}{dx}=\frac{ -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}}}{\frac{\partial{G_1}}{\partial{y_1}}}$$

Is this correct?? Could I improve something?? Could we write the last equality in a simplified way?? (Wondering)
 
mathmari said:
We have that $${\color{red}0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx}} \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} -\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \ \ \ \ (*) \\ {\color{green}0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}} \Rightarrow \frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}=-\frac{\partial{G_2}}{\partial{x}} -\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx} \\ \Rightarrow \frac{dy_2}{dx}=-\frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \\ (*) \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \Rightarrow \frac{dy_1}{dx}=\frac{ -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}}}{\frac{\partial{G_1}}{\partial{y_1}}}$$

Is this correct?? Could I improve something?? Could we write the last equality in a simplified way?? (Wondering)
The equations are correct. The elaborate notation obscures the fact that these are simply a pair of simultaneous equations for $\frac{dy_1}{dx}$ and $\frac{dy_2}{dx}$. So multiply the red equation by $\frac{\partial{G_2}}{\partial{y_2}}$, multiply the green equation by $\frac{\partial{G_1}}{\partial{y_2}}$, then subtract. The terms involving $\frac{dy_2}{dx}$ will cancel, and you will be left with a formula for $\frac{dy_1}{dx}$ in terms of the partial derivatives of $G_1$ and $G_2$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
2K
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K