Implicit Functions: How Can Derivatives Be Calculated?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Implicit
Click For Summary
SUMMARY

The discussion centers on the calculation of derivatives for functions defined implicitly by equations of the form \( G(x, y(x)) = 0 \). The key conclusion is that if \( G \) is differentiable and \( \frac{\partial G}{\partial y} \neq 0 \), then the derivative \( \frac{dy}{dx} \) can be expressed as \( \frac{dy}{dx} = -\frac{\frac{\partial G}{\partial x}}{\frac{\partial G}{\partial y}} \). Additionally, the discussion explores extending this concept to two functions \( y_1 \) and \( y_2 \) defined by two implicit equations \( G_1(x, y_1, y_2) = 0 \) and \( G_2(x, y_1, y_2) = 0 \), leading to a system of equations that can be solved for \( \frac{dy_1}{dx} \) and \( \frac{dy_2}{dx} \).

PREREQUISITES
  • Understanding of implicit differentiation
  • Familiarity with partial derivatives
  • Knowledge of the chain rule in calculus
  • Basic proficiency in mathematical notation and functions
NEXT STEPS
  • Study implicit differentiation techniques in calculus
  • Learn about the application of the chain rule for multivariable functions
  • Explore simultaneous equations involving derivatives
  • Investigate the implications of the implicit function theorem
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, differential equations, or any field requiring the application of implicit differentiation techniques.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $y(x)$ be defined implicitly by $G(x,y(x))=0$, where $G$ is a given two-variable function. Show that if $y(x)$ and $G$ are differentiable, then $$\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}} , \text{ if } \frac{\partial{G}}{\partial{y}} \neq 0$$
First of all, what does it mean that $y(x)$ is defined implicitly by $G(x,y(x))=0$ ?? (Wondering) I have done the following:

Let $f(x)=x$. Then $G(x,y(x))=G(f(x), y(x))=H(x)$.

We have that $G(x,y(x))=0 \Rightarrow H(x)=0$.

$H(x)=0 \Rightarrow \frac{H(x)}{dx}=0$

From the chain rule we have the following:

$$\frac{H(x)}{dx}=\frac{\partial{G}}{\partial{f}}\frac{df}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}\frac{dx}{dx}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow 0=\frac{\partial{G}}{\partial{x}}+\frac{\partial{G}}{\partial{y}}\frac{dy}{dx} \\ \Rightarrow \frac{\partial{G}}{\partial{y}}\frac{dy}{dx}=-\frac{\partial{G}}{\partial{x}} \\ \overset{ \text{ if } \frac{\partial{G}}{\partial{y}}\ \neq 0 }{\Longrightarrow }\frac{dy}{dx}=-\frac{\frac{\partial{G}}{\partial{x}}}{\frac{\partial{G}}{\partial{y}}}$$

Is this correct ?? Could I improve something ?? Is the substitution $f(x)=x$ necessary?? (Wondering)



Then I have to find a similar formula if $y_1$, $y_2$ are defined implicitly by $$G_1(x, y_1(x), y_2(x))=0 \\ G_2(x, y_1(x), y_2(x))=0$$

I have the following:

From the chain we have the following:

$$\frac{dG_1}{dx}=\frac{\partial{G_1}}{\partial{x}} \frac{dx}{dx}+\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow 0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx}$$

Similar, we get $$0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}$$

Is it correct so far??

How could I continue ?? (Wondering)
 
Physics news on Phys.org
We have that $$0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} -\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \ \ \ \ (*) \\ 0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx} \Rightarrow \frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}=-\frac{\partial{G_2}}{\partial{x}} -\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx} \\ \Rightarrow \frac{dy_2}{dx}=-\frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \\ (*) \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \Rightarrow \frac{dy_1}{dx}=\frac{ -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}}}{\frac{\partial{G_1}}{\partial{y_1}}}$$

Is this correct?? Could I improve something?? Could we write the last equality in a simplified way?? (Wondering)
 
mathmari said:
We have that $${\color{red}0=\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx}} \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} -\frac{\partial{G_1}}{\partial{y_2}} \frac{dy_2}{dx} \ \ \ \ (*) \\ {\color{green}0=\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}+\frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}} \Rightarrow \frac{\partial{G_2}}{\partial{y_2}} \frac{dy_2}{dx}=-\frac{\partial{G_2}}{\partial{x}} -\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx} \\ \Rightarrow \frac{dy_2}{dx}=-\frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \\ (*) \Rightarrow \frac{\partial{G_1}}{\partial{y_1}} \frac{dy_1}{dx}= -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}} \Rightarrow \frac{dy_1}{dx}=\frac{ -\frac{\partial{G_1}}{\partial{x}} +\frac{\partial{G_1}}{\partial{y_2}} \frac{\frac{\partial{G_2}}{\partial{x}} +\frac{\partial{G_2}}{\partial{y_1}} \frac{dy_1}{dx}}{\frac{\partial{G_2}}{\partial{y_2}}}}{\frac{\partial{G_1}}{\partial{y_1}}}$$

Is this correct?? Could I improve something?? Could we write the last equality in a simplified way?? (Wondering)
The equations are correct. The elaborate notation obscures the fact that these are simply a pair of simultaneous equations for $\frac{dy_1}{dx}$ and $\frac{dy_2}{dx}$. So multiply the red equation by $\frac{\partial{G_2}}{\partial{y_2}}$, multiply the green equation by $\frac{\partial{G_1}}{\partial{y_2}}$, then subtract. The terms involving $\frac{dy_2}{dx}$ will cancel, and you will be left with a formula for $\frac{dy_1}{dx}$ in terms of the partial derivatives of $G_1$ and $G_2$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K