Improper integrals (Comparison Test)

Click For Summary
SUMMARY

The discussion focuses on the convergence of improper integrals using the Comparison Test. Specifically, it establishes that the integral I = ∫(0 to π) (1/(sin^p x)) dx converges if p < 1. For the second integral I = ∫(0 to 1) (1/(1 - x^2)) dx, it is determined to be divergent due to the behavior near x = 1. The third integral I = ∫(2 to ∞) (1/(1 - x^2)) dx remains unsolved, with a request for further assistance.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with the Comparison Test in calculus
  • Knowledge of logarithmic functions and limits
  • Basic skills in integral calculus
NEXT STEPS
  • Explore the Comparison Test in detail, focusing on its applications in determining convergence
  • Study the behavior of integrals involving singularities, particularly near boundaries
  • Learn how to evaluate integrals with logarithmic divergence
  • Investigate techniques for solving improper integrals, especially those with infinite limits
USEFUL FOR

Students and educators in calculus, mathematicians focusing on analysis, and anyone interested in mastering the concepts of improper integrals and convergence tests.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Use the comparison test to find out whether or not the following improper integral exist(converge)?
1)integral(upper bound:pi lower bound:0)1/((sinx)^p) dx,p<1
2)integral(upper bound:1 lower bound:0) 1/(1-x^2) dx
3)integral(upper bound:infinity lower bound:2) 1/(1-x^2) dx
I have given a link to the topic there so the OP can see my response.
 
Physics news on Phys.org
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
 
Fernando Revilla said:
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
thank you,
can you help me with 2 and 3?
 
Fernando Revilla said:
I quote a question from Yahoo! Answers


I have given a link to the topic there so the OP can see my response.

For 2) you wish to determine if [math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} \end{align*}[/math] is convergent.

[math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} &= \int_0^1{\frac{1}{(1 - x)(1 + x)}\,dx} \\ &= \int_0^1{\frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx} \\ &= \lim_{\epsilon \to 1^+} \int_0^\epsilon{ \frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx } \\ &= \lim_{\epsilon \to 1^+} \left[ -\frac{1}{2}\ln{|1 - x|} + \frac{1}{2}\ln{|1 + x|} \right]_0^\epsilon \end{align*}[/math]

Since it should be obvious that this will go to [math]\displaystyle \begin{align*} \infty \end{align*}[/math], the integral is divergent.
 
For all $x\in [0,1)$: $$0\leq 1-x^2=(1+x)(1-x)\leq 2(1-x)\Rightarrow \frac{1}{2(1-x)}\leq \frac{1}{1-x^2}$$ But $\displaystyle\int_0^1\frac{dx}{2(1-x)}=\left[-\frac{\color{red}1}{\color{red}2}\log (1-x)\right]_0^{1}=+\infty$ so, by the Comparison Test $\displaystyle\int_0^1\frac{dx}{1-x^2}$ is divergent.

renyikouniao said:
thank you,
can you help me with 2 and 3?

Please, show some work for 3).
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K