MHB Improper integrals (Comparison Test)

AI Thread Summary
The discussion focuses on determining the convergence of three improper integrals using the Comparison Test. For the first integral, it is established that it converges if p<1, as both parts of the integral are shown to be convergent. The second integral diverges due to the behavior near x=1, where it approaches infinity, confirmed by the Comparison Test with a known divergent integral. The third integral's convergence is not addressed in detail, but participants express a need for assistance in solving it. Overall, the thread emphasizes the application of the Comparison Test for analyzing improper integrals.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Use the comparison test to find out whether or not the following improper integral exist(converge)?
1)integral(upper bound:pi lower bound:0)1/((sinx)^p) dx,p<1
2)integral(upper bound:1 lower bound:0) 1/(1-x^2) dx
3)integral(upper bound:infinity lower bound:2) 1/(1-x^2) dx
I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
 
Fernando Revilla said:
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
thank you,
can you help me with 2 and 3?
 
Fernando Revilla said:
I quote a question from Yahoo! Answers


I have given a link to the topic there so the OP can see my response.

For 2) you wish to determine if [math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} \end{align*}[/math] is convergent.

[math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} &= \int_0^1{\frac{1}{(1 - x)(1 + x)}\,dx} \\ &= \int_0^1{\frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx} \\ &= \lim_{\epsilon \to 1^+} \int_0^\epsilon{ \frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx } \\ &= \lim_{\epsilon \to 1^+} \left[ -\frac{1}{2}\ln{|1 - x|} + \frac{1}{2}\ln{|1 + x|} \right]_0^\epsilon \end{align*}[/math]

Since it should be obvious that this will go to [math]\displaystyle \begin{align*} \infty \end{align*}[/math], the integral is divergent.
 
For all $x\in [0,1)$: $$0\leq 1-x^2=(1+x)(1-x)\leq 2(1-x)\Rightarrow \frac{1}{2(1-x)}\leq \frac{1}{1-x^2}$$ But $\displaystyle\int_0^1\frac{dx}{2(1-x)}=\left[-\frac{\color{red}1}{\color{red}2}\log (1-x)\right]_0^{1}=+\infty$ so, by the Comparison Test $\displaystyle\int_0^1\frac{dx}{1-x^2}$ is divergent.

renyikouniao said:
thank you,
can you help me with 2 and 3?

Please, show some work for 3).
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top