MHB Improper integrals (Comparison Test)

Click For Summary
The discussion focuses on determining the convergence of three improper integrals using the Comparison Test. For the first integral, it is established that it converges if p<1, as both parts of the integral are shown to be convergent. The second integral diverges due to the behavior near x=1, where it approaches infinity, confirmed by the Comparison Test with a known divergent integral. The third integral's convergence is not addressed in detail, but participants express a need for assistance in solving it. Overall, the thread emphasizes the application of the Comparison Test for analyzing improper integrals.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Use the comparison test to find out whether or not the following improper integral exist(converge)?
1)integral(upper bound:pi lower bound:0)1/((sinx)^p) dx,p<1
2)integral(upper bound:1 lower bound:0) 1/(1-x^2) dx
3)integral(upper bound:infinity lower bound:2) 1/(1-x^2) dx
I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
 
Fernando Revilla said:
$(1)$ $I_1=\displaystyle\int_0^{\pi/2}\frac{dx}{\sin^px}$ is improper at $x=0$ and $I_2=\displaystyle\int_{\pi/2}^{\pi}\frac{dx}{\sin^px}$ is improper at $x=\pi$. Then, $I=\displaystyle\int_0^{\pi}\frac{dx}{\sin^px}$ is convergent iff $I_1$ and $I_2$ are both convergent. If $p<1$, $h(t)=t^p$ is decreasing on $(0,1]$ so if $x\in(0,1]$: $$0<\sin x<x\Rightarrow 0<x^p<\sin^p x\Rightarrow 0<\frac{1}{\sin^p x}<\frac{1}{x^p}$$ According to a well known property $\displaystyle\int_0^{1}\frac{dx}{x^p} $ is convergent, so $\displaystyle\int_0^{1}\frac{dx}{\sin^px}$ is also convergent. But $$I_1=\displaystyle\int_0^{1}\frac{dx}{\sin^px}+ \displaystyle\int_1^{\pi/2}\frac{dx}{\sin^px}$$ and $f(x)=1/\sin^p x$ is continuous on $[1,\pi/2]$, so $I_1$ is convergent. With the substitution $t=\pi-x$ we easily verify $I_2=I_1$ that is, $I$ is convergent if $p<1.$

P.S. If someone wants to solve $(2)$ and $(3)$ ...
thank you,
can you help me with 2 and 3?
 
Fernando Revilla said:
I quote a question from Yahoo! Answers


I have given a link to the topic there so the OP can see my response.

For 2) you wish to determine if [math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} \end{align*}[/math] is convergent.

[math]\displaystyle \begin{align*} \int_0^1{\frac{1}{1 - x^2}\,dx} &= \int_0^1{\frac{1}{(1 - x)(1 + x)}\,dx} \\ &= \int_0^1{\frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx} \\ &= \lim_{\epsilon \to 1^+} \int_0^\epsilon{ \frac{1}{2(1 - x)} + \frac{1}{2(1 + x)}\,dx } \\ &= \lim_{\epsilon \to 1^+} \left[ -\frac{1}{2}\ln{|1 - x|} + \frac{1}{2}\ln{|1 + x|} \right]_0^\epsilon \end{align*}[/math]

Since it should be obvious that this will go to [math]\displaystyle \begin{align*} \infty \end{align*}[/math], the integral is divergent.
 
For all $x\in [0,1)$: $$0\leq 1-x^2=(1+x)(1-x)\leq 2(1-x)\Rightarrow \frac{1}{2(1-x)}\leq \frac{1}{1-x^2}$$ But $\displaystyle\int_0^1\frac{dx}{2(1-x)}=\left[-\frac{\color{red}1}{\color{red}2}\log (1-x)\right]_0^{1}=+\infty$ so, by the Comparison Test $\displaystyle\int_0^1\frac{dx}{1-x^2}$ is divergent.

renyikouniao said:
thank you,
can you help me with 2 and 3?

Please, show some work for 3).
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K