Impulse and momentum / work-energy

AI Thread Summary
The discussion revolves around the incorrect calculation of average force using impulse and momentum principles. The initial approach miscalculated the time interval, leading to a force value that was double the correct answer. The correct method involves using the work-energy theorem, where average force is derived from the work done over displacement, factoring in the average velocity rather than just the initial velocity. The factor of one-half arises from the kinetic energy formula, emphasizing the importance of understanding the context of average force definitions. Ultimately, clarity in distinguishing between average force relative to time versus displacement is crucial for accurate calculations.
GoonP
Messages
2
Reaction score
1
Homework Statement
A car moving at 70km/h collides rams into an immobile steel wall. Its front of the is
compressed by 0.94m . What average force must a seat belt exert in order to restrain
a 75-kg passenger?
Relevant Equations
F = \frac{dp}{dt}
Hello, I am wondering why this take at a solution is wrong.

So basically, $F = \frac{dp}{dt} \Rightarrow F = m\frac{dv}{dt} \Rightarrow F_{\text{avg}}\Delta t = m \Delta v$. Quick conversions show that 70 km/hr = 19.4 m/s, and therefore $\Delta t = \frac{0.94}{19.4} = 0.04845$. Therefore, the answer I am getting is $\frac{75 \cdot 19.4}{0.04845} \approx 30 \text{kN}$ which is exactly double the correct answer.

The solution I have access too uses the fact that $F_{\text{avg}} = \frac{\Delta E}{\Delta x}$ which i can understand is a basic consequence of work energy theorem, and substituting kinetic energy for $E$ it is easy to see mathematically why it is half my answer.

Any guidance as to why my initial approach is incorrect?

Thanks!
 
Physics news on Phys.org
Welcome!

Consider that while the front of the car is being compressed by 0.94 m, its velocity is simultaneously and uniformly reduced from 70 km/h to zero.
Therefore, your calculated time is too short.
 
Oh ok that makes sense. Thanks!
 
Please use two \$$ to bracket LaTeX expressions. Click on "LaTeX Guide", lower left for more useful informaton about using LaTeX on this site.
The expression $$F = \frac{dp}{dt} \rightarrow F = m\frac{dv}{dt} \rightarrow F_{\text{avg}}\Delta t = m \Delta v$$ is appropriate for finding the average force if you know ##\Delta t## which you don't. In that case you have to make the additional assumption that the force is constant. The solution you have does that and calculates the work done by that force and averages over distance.

You could have gotten the same answer if you found ##\Delta t## by dividing ##\Delta x## not by the initial velocity ##v_0## but by the average velocity ##v_{\text{avg}}=\frac{1}{2}(v_0+0).## That's where your missing factor of 2 is. The answers are the same because the average velocity is calculated under the assumption that the acceleration (and hence the force) is constant.
 
  • Like
Likes DeBangis21 and MatinSAR
One can dispense with the uniform acceleration requirement if one decides to creatively interpret the "average" force as an average over displacement rather than as an average over time. The two averages can differ in general. If the deceleration is constant, they will match.

We have a force that acts on the passenger over a known displacement while doing a known amount of work.

The average (over displacement) force is defined as $$\frac {\int f(s) \cdot ds}{\int ds} = \frac{\int f(s) \cdot ds}{\Delta s}$$ The work done is given by ##\int f(s) \cdot ds##. We know initial and final kinetic energies for the passenger, so we know the work done. That gives us the numerator of the fraction. We are given the total displacement, ##\Delta s##. So we know the denominator of the fraction.

With this method, the factor of ##\frac{1}{2}## comes from the formula for kinetic energy: ##KE=\frac{1}{2}mv^2##.
 
jbriggs444 said:
One can dispense with the uniform acceleration requirement if one decides to creatively interpret the "average" force as an average over displacement rather than as an average over time.
While it is technically true that one can choose to define an average wrt one or another variable, it is highly misleading to intend average force as being wrt displacement without saying so. The default meaning of "average force" has to be average wrt time in order to be consistent with the default meaning of average acceleration. When did you last see a question asking for average acceleration wrt distance? Educators should know better.
That said, I cannot think what the practical value could be of computing an average force. In the real world, we care about momentum, energy and forces exceeding thresholds. So maybe no great harm done.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top