Conserving Momentum in Emptying a Freight Car

AI Thread Summary
The discussion centers on the momentum dynamics of a freight car as it empties sand, highlighting the complexities of analyzing systems with changing mass. The initial approach incorrectly assumed constant mass, leading to confusion about the application of Newton's second law. It was clarified that the force acting on the system must account for both the cart and the sand, as the sand carries momentum when it falls. The correct analysis requires acknowledging that the mass of the system is not constant, necessitating a more nuanced application of momentum principles. Ultimately, the resolution emphasized the importance of considering all components of the system when applying force and momentum equations.
  • #51
haruspex said:
The entire argument is over notation.

You can draw a diagram of a system of particles in two different states and define p1 as its momentum in one state and p2 as its momentum in the other.
You can then write ##F.\Delta t=p_2-p_1##, and if the expressions for p1 and p2 involve such as ##v## and ##v+\Delta v## then you may well obtain a valid differential equation.

The confusion arises because you denoted the momenta of these states generically as a function of time, p(t). That implies a definition that can be interpreted at any given time t, but I cannot see a way to do that with your p1 and p2.
In any algebraic development, if you write ##f(t)=x(t)y(t)## then it follows that ##f(t+\Delta t)=x(t+\Delta t)y(t+\Delta t)##, but your equations do not satisfy that.
Fine. Pick some time between 0 and ##\frac{m_s}{b}##, call it ##t'##. Then call the first equation ##p_1## and the second equation at a ##Δt## later ##p_2##.
 
Physics news on Phys.org
  • #52
bob012345 said:
The problem at hand consists only of everything at time t and everything at time t+Δt. I kept track of that interval only not all Δt′s.
I disagree. Tell me again the definition of your system at any time t
 
  • #53
hutchphd said:
I disagree. Tell me again the definition of your system at any time t
At time ##t## the system is the left hand side of this figure. It consists of the mass of cart plus however much sand is in the cart at that moment traveling with velocity ##v_c##. Here it is in all it's glory;

Figure 12.7.png
 
  • #54
bob012345 said:
Fine. Pick some time between 0 and ##\frac{m_s}{b}##, call it ##t'##. Then call the first equation ##p_1## and the second equation at a ##Δt## later ##p_2##.
So your working becomes

Let p(t) be the momentum of the system consisting of the cart and its remaining sand at time t:
##\vec P(t ) = (m_c + m_s -bt)\vec v_c(t)##
Thus ##\vec P(t + Δt) = (m_c + m_s - b(t +Δt))(\vec v_c(t) + Δ\vec v_c))##.
But the momentum that had been in ##\vec P(t )## is now shared between ##\vec P(t + Δt) ## and the sand that was lost in interval ##(t, t + Δt) ##. That lost momentum is ##-Δm_s(v_c(t) + Δ\vec v_c)##. (##Δm_s## being negative).
[We can simplify to ##Δm_sv_c(t)## since the other part is a second order small quantity.]
Were there no external force, conservation of momentum gives
##\vec P(t ) = \vec P(t + Δt)- Δm_s(v_c(t) + Δ\vec v_c)##, or ##\Delta \vec P(t ) = Δm_sv_c(t) ##.
But in the same interval, a further ##\vec F.\Delta t## has been injected into the system, so
##\Delta \vec P(t ) = Δm_sv_c(t) +\vec F.\Delta t##.

Looks ok to me.
 
  • Like
Likes bob012345
  • #55
haruspex said:
So your working becomes

Let p(t) be the momentum of the system consisting of the cart and its remaining sand at time t:
##\vec P(t ) = (m_c + m_s -bt)\vec v_c(t)##
Thus ##\vec P(t + Δt) = (m_c + m_s - b(t +Δt))(\vec v_c(t) + Δ\vec v_c))##.
But the momentum that had been in ##\vec P(t )## is now shared between ##\vec P(t + Δt) ## and the sand that was lost in interval ##(t, t + Δt) ##. That lost momentum is ##-Δm_s(v_c(t) + Δ\vec v_c)##. (##Δm_s## being negative).
[We can simplify to ##Δm_sv_c(t)## since the other part is a second order small quantity.]
Were there no external force, conservation of momentum gives
##\vec P(t ) = \vec P(t + Δt)- Δm_s(v_c(t) + Δ\vec v_c)##, or ##\Delta \vec P(t ) = Δm_sv_c(t) ##.
But in the same interval, a further ##\vec F.\Delta t## has been injected into the system, so
##\Delta \vec P(t ) = Δm_sv_c(t) +\vec F.\Delta t##.

Looks ok to me.
I like the conserve momentum approach except for or up to ##\vec FΔt##.
 
Back
Top