bob012345
Gold Member
- 2,286
- 1,010
Fine. Pick some time between 0 and ##\frac{m_s}{b}##, call it ##t'##. Then call the first equation ##p_1## and the second equation at a ##Δt## later ##p_2##.haruspex said:The entire argument is over notation.
You can draw a diagram of a system of particles in two different states and define p1 as its momentum in one state and p2 as its momentum in the other.
You can then write ##F.\Delta t=p_2-p_1##, and if the expressions for p1 and p2 involve such as ##v## and ##v+\Delta v## then you may well obtain a valid differential equation.
The confusion arises because you denoted the momenta of these states generically as a function of time, p(t). That implies a definition that can be interpreted at any given time t, but I cannot see a way to do that with your p1 and p2.
In any algebraic development, if you write ##f(t)=x(t)y(t)## then it follows that ##f(t+\Delta t)=x(t+\Delta t)y(t+\Delta t)##, but your equations do not satisfy that.