MHB In a triangle ABC, prove that 1<cosA+cosB+cosC< or equal to 3/2

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary
The discussion focuses on proving the inequality \(1 < \cos A + \cos B + \cos C \leq \frac{3}{2}\) for triangle ABC. Participants explore methods to demonstrate the upper bound using techniques like completing the square and sum-to-product formulas, while also referencing the sine function's properties. A significant breakthrough occurs when one contributor suggests a proof by contradiction to establish that \(\cos A + \cos B + \cos C > 1\). The conversation highlights the challenges faced in the proof process, particularly in manipulating trigonometric identities correctly. Ultimately, the contributors are engaged in refining their approaches to solidify their understanding of the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In a triangle ABC, prove that $1<cosA+cosB+cosC \leq \frac{3}{2} $.

One can easily prove that $cosA+cosB+cosC \leq 3/2 $, i.e. it can be proven to be true by
1. Using only the method of completing the square with no involvement of any inequality formula like Jensen's, AM-GM, etc.
2. By sum-to-product formulas and the fact that $sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2} \leq \frac{1}{8} $

But no matter how hard I try, I couldn't prove the sum of the angles A, B and C to be greater than 1. In fact, I find myself always end up with the 'less than' sign.

If you can offer any help by giving only hint, it would be much appreciated.

Thanks.

(Edit: I think I know how to prove it now: By contradiction!)

Thanks anyway.
 
Last edited:
Mathematics news on Phys.org
Hint: Prove that $\displaystyle \cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$.
 
I'm going to prove it by contradiction to show that in any triangle ABC, $1<cosA+cosB+cosC$ is correct.

First, I let $cosA+cosB+cosC<1$.

$cosA+cosB<1-cosC$

$2cos\frac{A+B}{2}cos\frac{A-B}{2}<1-(1-2sin^2 \frac{C}{2})$

$2sin\frac{C}{2}cos\frac{A-B}{2}-2sin^2 \frac{C}{2}<0$

$(2sin\frac{C}{2})(cos\frac{A-B}{2}-sin\frac{C}{2})<0$

Since $sin\frac{C}{2}>0$ which also means $2sin\frac{C}{2}>0$, and to have $(2sin\frac{C}{2})(cos\frac{A-B}{2}-sin\frac{C}{2})<0$, the following must be true:
$(cos\frac{A-B}{2}-sin\frac{C}{2})<0$

Thus,

$(cos\frac{A-B}{2}-sin\frac{C}{2})<0$

$(cos\frac{A-B}{2}-cos\frac{A+B}{2})<0$

$sinA<0$

This is a false statement and showing our assumption ($cosA+cosB+cosC<1$) leads to contradiction, thus concluding
$cosA+cosB+cosC>1$ must be true.:)

How does this sound to you?
 
anemone said:
I'm going to prove it by contradiction to show that in any triangle ABC, $1<cosA+cosB+cosC$ is correct.

First, I let $cosA+cosB+cosC<1$.

You should let $\cos A+\cos B+\cos C\le 1$.

$(cos\frac{A-B}{2}-cos\frac{A+B}{2})\le 0$

$sinA\le 0$

The second line should read $\displaystyle 2\sin\frac{A}{2}\sin\frac{B}{2}\le 0$.
 
Last edited:
Still I can't get thing right!(Sadface)

Alexmahone said:
You should let $\cos A+\cos B+\cos C\le 1$.
OK. All right.
Alexmahone said:
The second line should read $\displaystyle 2\sin\frac{A}{2}\sin\frac{B}{2}\le 0$.
Ah!:mad:
I'm so tired of all this and I thought I saw $2sin\frac{A}{2}cos\frac{A}{2}$!(Angry)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K