- #1
- 325
- 4
As I understand it, an exciton is created when an electron is liberated from the valence band of a semiconductor, but becomes bound to the hole that it leaves vacant via Coulomb attraction.
We can calculate the quantized energy levels of the exciton just like hydrogen. I have done this for the ground state of an exciton in GaN, which turns out to be about 0.023eV.
At room temperature, the thermal energy is about kT = 0.026eV. These are two close figures. Am I correct in thinking kT can be considered the phonon energy?
I was wondering, do excitons get created by phonons knocking the electrons out of the valence band, or is it only able to happen when there is a photon of wavelength equal to the ground state (or an excited state) of the exciton?
We can calculate the quantized energy levels of the exciton just like hydrogen. I have done this for the ground state of an exciton in GaN, which turns out to be about 0.023eV.
At room temperature, the thermal energy is about kT = 0.026eV. These are two close figures. Am I correct in thinking kT can be considered the phonon energy?
I was wondering, do excitons get created by phonons knocking the electrons out of the valence band, or is it only able to happen when there is a photon of wavelength equal to the ground state (or an excited state) of the exciton?