MHB Induction to find the determinant

Click For Summary
The discussion focuses on finding the determinant of the matrix $A_n$, defined with specific entries based on the indices $i$ and $j$. The initial examples for $n=2$ and $n=3$ suggest that the determinant follows the pattern $|A_n| = n(n-1)$. The user proposes using mathematical induction to prove this, establishing a base case and an inductive hypothesis. The inductive step involves manipulating the determinant of $A_{k+1}$ and relating it to $A_k$ and $A_{k-1}$, ultimately leading to the conclusion that $|A_{k+1}| = (k+1)!$. The discussion raises questions about correctness and potential improvements in the formal presentation of the proof.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Suppose we have the matrix $A_n=(A_{ij})\in \mathbb{C}^{n\times n}$ with $a_{ij}=\left\{\begin{matrix}
1 , & i=j\\
-1 , & i=j-1\\
j^2, & i=j+1\\
0 , & \text{ otherwise}
\end{matrix}\right.$ for $1\leq i,j\leq n$.

I want to find the determinant using induction.

I have done the following:

To see the patern I have made some examples:

For $n=2$ we have the matrix $A_2=\begin{pmatrix}1& -1 \\ 1& 1\end{pmatrix}$. The determinant is $|A_2|=\begin{vmatrix}1& -1 \\ 1& 1\end{vmatrix}=2=n(n-1)$.

For $n=3$ we have the matrix $A_3=\begin{pmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{pmatrix}$. The determinant is $|A_3|=\begin{vmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{vmatrix} \ \ \overset{R_2=R_2-R_1}{ = } \ \ \begin{vmatrix}1& -1& 0 \\ 0 & 2 & -1 \\ 0 & 4 & 1\end{vmatrix}=\begin{vmatrix} 2 & -1 \\ 4 & 1\end{vmatrix}=2-(-4)=6=n(n-1)$. So, we want to prove that the determinant is $|A_n|=n(n-1)$, for $n\geq 2$, right? (Wondering) Induction on $n$.

Base case: For $n=2$, as shown above, it holds.

Inductive hypothesis: We suppose that it holds for $n=k$, i.e., $|A_k|=k(k-1)$.

Inductive step: We want to prove it for $n=k+1$, i.e., that it holds that $|A_{k+1}|=(k+1)k$. When we consider the matrix without the last row and without the last column, it is the matrix $A_k$.

But what is the relation between the determinant of $A_k$ and that of $A_{k+1}$ ? (Wondering)
 
Physics news on Phys.org
I did some more examples, and I think that the determinant of $A_n$ is $n!$.

The matrix is of the form $$A_k=\begin{pmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{pmatrix}$$

Since at the last row all the elements are zero, except of two, we have the following:
$$|A_k|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{vmatrix} \\ =(-1)^{k+k-1}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}+(-1)^{k+k}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 \end{vmatrix}$$

The second summand is $|A_{k-1}|$ and the first one is the following:

$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}=-(-1)^{2k-2}\begin{vmatrix}1& -1 & 0 & 0 & \ldots & 0 \\ 1 & 1 & -1 & 0 & \ldots & 0 \\ 0 & 4 & 1 & -1 &\ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & 1\end{vmatrix}=-|A_{k-2}|$$ Is this correct? (Wondering)
 
Last edited by a moderator:
I did a mistake at the matrix. It must be as follows:

In the inductive step we have the matrix:
$$|A_{k+1}|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& 0 & k^2 & 1 \end{vmatrix}$$

As for the ast line we get:
\begin{align*}|A_{k+1}|=&(-1)^{k+1+k}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +(-1)^{k+1+k+1}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix} \\ = & -k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix}\end{align*}

The second term is the determinant of the matrix $A_k$. To calculate the first term of the sum, we develop as for the last column:
$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ =(-1)^{k+k}\cdot (-1)\cdot \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix} \\ =- \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}$$

The determinant $\displaystyle{\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}}$ is the determinant of the matrix $A_{k-1}$. Therefore, we have \begin{align*}|A_{k+1}|&=-k^2\cdot (-|A_{k-1}|)+|A_k|=k^2|A_{k-1}|+|A_k|=k^2(k-1)!+k! \\ &=k\cdot k(k-1)!+k! =k\cdot k!+k!=k!\cdot (k+1) =(k+1)!\end{align*} Is everything correct? Could we improve something or write it more formal? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K