Induction to find the determinant

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Determinant Induction
Click For Summary
SUMMARY

This discussion focuses on deriving the determinant of a specific matrix \( A_n \) defined for \( n \times n \) matrices with elements \( a_{ij} \) based on their indices. The matrix is structured such that \( a_{ij} = 1 \) for \( i = j \), \( a_{ij} = -1 \) for \( i = j-1 \), \( a_{ij} = j^2 \) for \( i = j+1 \), and \( 0 \) otherwise. Through mathematical induction, it is established that the determinant \( |A_n| = n! \) for \( n \geq 2 \), with base cases verified for \( n = 2 \) and \( n = 3 \).

PREREQUISITES
  • Understanding of matrix determinants and properties
  • Familiarity with mathematical induction techniques
  • Knowledge of matrix operations, including row reduction
  • Basic concepts of linear algebra, particularly for \( n \times n \) matrices
NEXT STEPS
  • Study the properties of determinants in linear algebra
  • Explore advanced techniques in mathematical induction
  • Learn about matrix transformations and their effects on determinants
  • Investigate other matrix types and their determinants, such as triangular and diagonal matrices
USEFUL FOR

Mathematicians, students studying linear algebra, and anyone interested in the properties of determinants and induction proofs will benefit from this discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Suppose we have the matrix $A_n=(A_{ij})\in \mathbb{C}^{n\times n}$ with $a_{ij}=\left\{\begin{matrix}
1 , & i=j\\
-1 , & i=j-1\\
j^2, & i=j+1\\
0 , & \text{ otherwise}
\end{matrix}\right.$ for $1\leq i,j\leq n$.

I want to find the determinant using induction.

I have done the following:

To see the patern I have made some examples:

For $n=2$ we have the matrix $A_2=\begin{pmatrix}1& -1 \\ 1& 1\end{pmatrix}$. The determinant is $|A_2|=\begin{vmatrix}1& -1 \\ 1& 1\end{vmatrix}=2=n(n-1)$.

For $n=3$ we have the matrix $A_3=\begin{pmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{pmatrix}$. The determinant is $|A_3|=\begin{vmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{vmatrix} \ \ \overset{R_2=R_2-R_1}{ = } \ \ \begin{vmatrix}1& -1& 0 \\ 0 & 2 & -1 \\ 0 & 4 & 1\end{vmatrix}=\begin{vmatrix} 2 & -1 \\ 4 & 1\end{vmatrix}=2-(-4)=6=n(n-1)$. So, we want to prove that the determinant is $|A_n|=n(n-1)$, for $n\geq 2$, right? (Wondering) Induction on $n$.

Base case: For $n=2$, as shown above, it holds.

Inductive hypothesis: We suppose that it holds for $n=k$, i.e., $|A_k|=k(k-1)$.

Inductive step: We want to prove it for $n=k+1$, i.e., that it holds that $|A_{k+1}|=(k+1)k$. When we consider the matrix without the last row and without the last column, it is the matrix $A_k$.

But what is the relation between the determinant of $A_k$ and that of $A_{k+1}$ ? (Wondering)
 
Physics news on Phys.org
I did some more examples, and I think that the determinant of $A_n$ is $n!$.

The matrix is of the form $$A_k=\begin{pmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{pmatrix}$$

Since at the last row all the elements are zero, except of two, we have the following:
$$|A_k|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{vmatrix} \\ =(-1)^{k+k-1}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}+(-1)^{k+k}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 \end{vmatrix}$$

The second summand is $|A_{k-1}|$ and the first one is the following:

$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}=-(-1)^{2k-2}\begin{vmatrix}1& -1 & 0 & 0 & \ldots & 0 \\ 1 & 1 & -1 & 0 & \ldots & 0 \\ 0 & 4 & 1 & -1 &\ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & 1\end{vmatrix}=-|A_{k-2}|$$ Is this correct? (Wondering)
 
Last edited by a moderator:
I did a mistake at the matrix. It must be as follows:

In the inductive step we have the matrix:
$$|A_{k+1}|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& 0 & k^2 & 1 \end{vmatrix}$$

As for the ast line we get:
\begin{align*}|A_{k+1}|=&(-1)^{k+1+k}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +(-1)^{k+1+k+1}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix} \\ = & -k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix}\end{align*}

The second term is the determinant of the matrix $A_k$. To calculate the first term of the sum, we develop as for the last column:
$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ =(-1)^{k+k}\cdot (-1)\cdot \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix} \\ =- \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}$$

The determinant $\displaystyle{\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}}$ is the determinant of the matrix $A_{k-1}$. Therefore, we have \begin{align*}|A_{k+1}|&=-k^2\cdot (-|A_{k-1}|)+|A_k|=k^2|A_{k-1}|+|A_k|=k^2(k-1)!+k! \\ &=k\cdot k(k-1)!+k! =k\cdot k!+k!=k!\cdot (k+1) =(k+1)!\end{align*} Is everything correct? Could we improve something or write it more formal? (Wondering)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K