MHB Induction to find the determinant

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Suppose we have the matrix $A_n=(A_{ij})\in \mathbb{C}^{n\times n}$ with $a_{ij}=\left\{\begin{matrix}
1 , & i=j\\
-1 , & i=j-1\\
j^2, & i=j+1\\
0 , & \text{ otherwise}
\end{matrix}\right.$ for $1\leq i,j\leq n$.

I want to find the determinant using induction.

I have done the following:

To see the patern I have made some examples:

For $n=2$ we have the matrix $A_2=\begin{pmatrix}1& -1 \\ 1& 1\end{pmatrix}$. The determinant is $|A_2|=\begin{vmatrix}1& -1 \\ 1& 1\end{vmatrix}=2=n(n-1)$.

For $n=3$ we have the matrix $A_3=\begin{pmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{pmatrix}$. The determinant is $|A_3|=\begin{vmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{vmatrix} \ \ \overset{R_2=R_2-R_1}{ = } \ \ \begin{vmatrix}1& -1& 0 \\ 0 & 2 & -1 \\ 0 & 4 & 1\end{vmatrix}=\begin{vmatrix} 2 & -1 \\ 4 & 1\end{vmatrix}=2-(-4)=6=n(n-1)$. So, we want to prove that the determinant is $|A_n|=n(n-1)$, for $n\geq 2$, right? (Wondering) Induction on $n$.

Base case: For $n=2$, as shown above, it holds.

Inductive hypothesis: We suppose that it holds for $n=k$, i.e., $|A_k|=k(k-1)$.

Inductive step: We want to prove it for $n=k+1$, i.e., that it holds that $|A_{k+1}|=(k+1)k$. When we consider the matrix without the last row and without the last column, it is the matrix $A_k$.

But what is the relation between the determinant of $A_k$ and that of $A_{k+1}$ ? (Wondering)
 
Physics news on Phys.org
I did some more examples, and I think that the determinant of $A_n$ is $n!$.

The matrix is of the form $$A_k=\begin{pmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{pmatrix}$$

Since at the last row all the elements are zero, except of two, we have the following:
$$|A_k|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 & -1\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& k^2 & 1\end{vmatrix} \\ =(-1)^{k+k-1}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}+(-1)^{k+k}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2& 1 \end{vmatrix}$$

The second summand is $|A_{k-1}|$ and the first one is the following:

$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-1)^2 & -1\end{vmatrix}=-(-1)^{2k-2}\begin{vmatrix}1& -1 & 0 & 0 & \ldots & 0 \\ 1 & 1 & -1 & 0 & \ldots & 0 \\ 0 & 4 & 1 & -1 &\ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 0 & \ldots & 1\end{vmatrix}=-|A_{k-2}|$$ Is this correct? (Wondering)
 
Last edited by a moderator:
I did a mistake at the matrix. It must be as follows:

In the inductive step we have the matrix:
$$|A_{k+1}|=\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& 0 & k^2 & 1 \end{vmatrix}$$

As for the ast line we get:
\begin{align*}|A_{k+1}|=&(-1)^{k+1+k}k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +(-1)^{k+1+k+1}\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix} \\ = & -k^2\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ & +\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 &0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots \\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & -1 \\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & 1 \end{vmatrix}\end{align*}

The second term is the determinant of the matrix $A_k$. To calculate the first term of the sum, we develop as for the last column:
$$\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0\\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0\\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 & 0\\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots& \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 & 0\\ 0 & 0 & 0& 0 & 0 & \ldots & 0& (k-1)^2 & -1 \end{vmatrix} \\ =(-1)^{k+k}\cdot (-1)\cdot \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix} \\ =- \begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}$$

The determinant $\displaystyle{\begin{vmatrix}1& -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 1 & 1 & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 4 & 1 & -1 & 0 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ 0 & 0 & 0& 0 & 0 & \ldots & (k-2)^2& 1 \end{vmatrix}}$ is the determinant of the matrix $A_{k-1}$. Therefore, we have \begin{align*}|A_{k+1}|&=-k^2\cdot (-|A_{k-1}|)+|A_k|=k^2|A_{k-1}|+|A_k|=k^2(k-1)!+k! \\ &=k\cdot k(k-1)!+k! =k\cdot k!+k!=k!\cdot (k+1) =(k+1)!\end{align*} Is everything correct? Could we improve something or write it more formal? (Wondering)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top