Inelastic collision followed by circular motion

Click For Summary
After the inelastic collision, the masses travel at a speed of 2.25 m/s. The discussion explores the subsequent motion of these masses on a circular track. Three distinct possibilities for their behavior are proposed, although not explicitly listed in the thread. The focus remains on understanding the dynamics following the collision and the implications for circular motion. Further clarification on these possibilities is sought to deepen the analysis.
Sal Coombs
Messages
1
Reaction score
1
Homework Statement
A 3.0-kg mass is sliding on a horizontal frictionless surface with a speed of 3.0 m/s when it collides with a 1.0-kg mass initially at the bottom of a circular track. The masses stick together and slide up a frictionless circular track of radius 0.40 m. To what maximum height, h, above the horizontal surface (the original height of the masses) will the masses slide?
Relevant Equations
mv = mv Momentum
1/2mv^2 Kinetic Energy
mgh Potential Energy
(mv^2)/r Centripetal Force
Found the speed at which the masses will travel after their collision: 2.25m/s
Not sure what to do next...
 
Physics news on Phys.org
Sal Coombs said:
Found the speed at which the masses will travel after their collision: 2.25m/s
Not sure what to do next...
What happens when the masses follow the circular track?
 
To expand on @PeroK's question, there are three distinct possibilities. Can you list them?
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
847