Inelastic collisions with constant momentum

AI Thread Summary
The discussion centers on the calculation of kinetic energy in inelastic collisions, specifically questioning why the expected answer of 1/2 mv² is not achieved. Participants agree that the book's phrasing about "identical objects" may be misleading, as only objects of the same mass are necessary for the calculations. The conversation highlights the importance of clarity in terminology, suggesting that "identical objects" could imply additional conditions like equal charges. The confusion stems from the interpretation of the problem, particularly regarding the reference to "the same two objects" from a previous question. Overall, the dialogue emphasizes the need for precise language in physics texts to avoid misunderstandings.
haha0p1
Messages
46
Reaction score
9
Homework Statement
The total momentum before the collision in an inelastic collisions is 0, but the total kinetic energy before the collision is 1/2mv². Calculate how the total kinetic energy before collision is 1/2mv².
Relevant Equations
Ek=1/2mv²
Kinetic energy before collision =1/2 mv² + 1/2 mv² = mv² (since energy is a scalar quantity, the direction does not matter). Kindly tell why am I not getting the required answer i.e: 1/2 mv². Am I doing the calculation wrong?
IMG_20230102_154827.jpg
 
Last edited by a moderator:
Physics news on Phys.org
Hi,

I agree with your calculation. An unfortunate error in the book.

##\ ##
 
It's interesting that the book specifies the "same object" or "identical" objects, where all that is required kinematically is objects of the same mass!
 
PeroK said:
It's interesting that the book specifies the "same object" or "identical" objects, where all that is required kinematically is objects of the same mass!
Truee
 
PeroK said:
It's interesting that the book specifies the "same object" or "identical" objects, where all that is required kinematically is objects of the same mass!
I think it's economy of words. "Identical objects" is shorter than "objects of the same mass" and conveys the idea of symmetry. "Identical" becomes relatively conciser when the masses also carry equal charges.
 
PeroK said:
It's interesting that the book specifies the "same object"
No, it says "the same two objects". Presumably the same two as in the preceding question.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top