Delta2
Homework Helper
- 6,002
- 2,628
According to the Impulse-Momentum Theorem the change in the momentum of a system of bodies is equal to the total impulse of the external forces acting on the system.
So:
Change in momentum of the system bullet+block ##\Delta P=(M+m)u-mv##
Impulse of external forces acting on the system: The external forces are the weight of the bullet ##mg## and the weight of the block ##Mg##. Their impulses , by definition, are equal to ##-mg\Delta t## and ##-Mg\Delta t## (we take as positive the up direction, that is the direction of the initial velocity of the bullet ##v##).
So by impulse-momentum theorem we have $$(M+m)u-mv=-mg\Delta t-Mg\Delta t$$ and the final equation follows with just a tiny bit of algebra.
So:
Change in momentum of the system bullet+block ##\Delta P=(M+m)u-mv##
Impulse of external forces acting on the system: The external forces are the weight of the bullet ##mg## and the weight of the block ##Mg##. Their impulses , by definition, are equal to ##-mg\Delta t## and ##-Mg\Delta t## (we take as positive the up direction, that is the direction of the initial velocity of the bullet ##v##).
So by impulse-momentum theorem we have $$(M+m)u-mv=-mg\Delta t-Mg\Delta t$$ and the final equation follows with just a tiny bit of algebra.