Inequality challenge for all positive (but not zero) real a, b and c

Click For Summary

Discussion Overview

The discussion revolves around proving the inequality $$\frac{ab}{a+b+ab}+\frac{bc}{b+c+bc}+\frac{ca}{c+a+ca}\le \frac{a^2+b^2+c^2+6}{9}$$ for all positive real numbers $a$, $b$, and $c$, where $a$, $b$, and $c$ are not zero. The scope includes mathematical reasoning and problem-solving approaches.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the inequality to be proven.
  • Post 2 reiterates the inequality and provides a hint, though the hint is not specified.
  • Post 3 contains a participant's solution, but the details of the solution are not provided.
  • Post 4 expresses approval of another participant's approach to the problem.

Areas of Agreement / Disagreement

Participants appear to be engaged in a collaborative exploration of the problem, with some expressing agreement on approaches, but no consensus on the proof or resolution of the inequality is evident.

Contextual Notes

Details of the proposed solutions and the hint provided in Post 2 are not fully elaborated, leaving some assumptions and steps unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{ab}{a+b+ab}+\frac{bc}{b+c+bc}+\frac{ca}{c+a+ca}\le \frac{a^2+b^2+c^2+6}{9}$$ for all positive real $a,\,b$ and $c$ and $a,\,b,\,c\ne 0$.
 
Mathematics news on Phys.org
anemone said:
Prove $$\frac{ab}{a+b+ab}+\frac{bc}{b+c+bc}+\frac{ca}{c+a+ca}\le \frac{a^2+b^2+c^2+6}{9}$$ for all positive real $a,\,b$ and $c$ and $a,\,b,\,c\ne 0$.

Hint:

Note that $$\frac{ab}{a+b+ab}=\frac{1}{\frac{1}{a}+\frac{1}{b}+1}$$.
 
my solution:
using $AP\geq HP$
We have :$\\
\dfrac{ab}{a+b+ab}\leq \dfrac{a+b+1}{9}---(1)\\
\dfrac{bc}{b+c+bc}\leq \dfrac{b+c+1}{9}---(2)\\
\dfrac{ca}{c+a+ca}\leq \dfrac{c+a+1}{9}---(3)\\
(1)+(2)+(3):\dfrac {ab}{a+b+ab}+\dfrac {bc}{b+c+bc}+\dfrac {ca}{c+a+ca}\leq\dfrac{2a+2b+2c+3}{9}\leq \dfrac{a^2+1+b^2+1+c^2+1+3}{9}= \dfrac{a^2+b^2+c^2+6}{9}$
(using $AP\geq GP$)
 
Well done Albert!(Cool) That is how I approached the problem as well!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K