MHB Inequality Challenge: Prove Real $a,b,c,x,y,z$

Click For Summary
The inequality states that for all positive real numbers a, b, c, x, y, and z, the expression a^3/x + b^3/y + c^3/z is greater than or equal to (a+b+c)^3/(3(x+y+z)). The discussion revolves around proving this inequality using mathematical techniques. A hint is provided to guide participants in finding a solution. The challenge emphasizes the importance of understanding inequalities in mathematical analysis. Engaging with this problem can enhance skills in algebra and inequality proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove for all positive real $a,\,b,\,c,\,x,\,y,\,z$ that $\dfrac{a^3}{x}+\dfrac{b^3}{y}+\dfrac{c^3}{z}\ge \dfrac{(a+b+c)^3}{3(x+y+z)}$.
 
Mathematics news on Phys.org
Hint:

Use the Cauchy-Schwarz inequality twice and then Holder's inequality once will be sufficient...
 
My solution:

Use the Cauchy Schwarz inequality, the LHS of the given inequality becomes greater than:

$\dfrac{a^3}{x}+\dfrac{b^3}{y}+\dfrac{c^3}{z}\ge \dfrac{(a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}})^2}{x+y+z}$

Next, impose the Holder's inequality on $a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}}$, we see that we have:

$a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}}=a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\ge\sqrt{a^2+b^2+c^2}\sqrt{a+b+c}$

Thus $(a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}})^2\ge (a^2+b^2+c^2)(a+b+c)$.

Use the Cauchy Schwarz inequality again we have $3(a^2+b^2+c^2)≥(a+b+c)^2$.

At last, the combined result leads us to the desired proof:

$\begin{align*}\dfrac{a^3}{x}+\dfrac{b^3}{y}+\dfrac{c^3}{z}&\ge \dfrac{(a^{\frac{3}{2}}+b^{\frac{3}{2}}+c^{\frac{3}{2}})^2}{x+y+z}\\&\ge \dfrac{(a^2+b^2+c^2)(a+b+c)}{x+y+z}\\&\ge \dfrac{(a+b+c)^2(a+b+c)}{3(x+y+z)}\\&\ge \dfrac{(a+b+c)^3}{3(x+y+z)}\,\,\,\,\text{Q.E.D.}\end{align*}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K