MHB Inequality Challenge: Prove $\sum \frac{x^3}{x^2+xy+y^2}\geq\frac{a+b+c}{3}$

Albert1
Messages
1,221
Reaction score
0
$a,b,c \in N$,prove :
$\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\geq\dfrac{a+b+c}{3}$
 
Mathematics news on Phys.org
The result is true for $a,b,c>0$ in general.
By normalizing the inequality we may assume that $a+b+c=1$. $(*)$

Now rewrite the inequality we are to prove, that is
$$
\sum_{\text{cyclic}} \frac{a^3}{a^2+ab+b^2} \geq \frac{1}{3}\,,\qquad (**)
$$
as
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{3}\,.
$$

Observe that $x\mapsto 1/(1+x+x^2)$ is convex in $(0,\infty)$ because its second derivative is $\frac{6 \, {\left(x + 1\right)} x}{{\left(x^{2} + x + 1\right)}^{3}} > 0$, hence by Jensen's inequality with weights $a,b,c$ we get
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{1+\left(\sum_{\text{cyclic}}a\,(b/a)\right)+\left(\sum_{\text{cyclic}}a\,(b/a)\right)^2} = \frac{1}{1+1+1^2} =\frac{1}{3}\,.
$$

$(*)$ If $a+b+c=\lambda \neq 1$, make the change of variables $a \mapsto a/\lambda\,, b \mapsto b/\lambda \,, c \mapsto c/\lambda$ and the $\lambda$s will cancel out when considering both sides.

$(**)$ When we have variables $(a,b,c)$, the notation $\sum_{\text{cyclic}} f(a,b,c)$ simply means $f(a,b,c)+f(b,c,a)+f(c,a,b)$.
 
Albert said:
$a,b,c \in N$,prove :
$\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\geq\dfrac{a+b+c}{3}$
indeed even $a,b,c\in R^+$,this statement is also true
hint :
at first prove the following statement:
$a,b,c \in R^+$
$\dfrac{a^3}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}$
 
Albert said:
indeed even $a,b,c\in R^+$,this statement is also true
hint :
at first prove the following statement:
$a,b,c \in R^+$
$\dfrac{a^3}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}$
for $a^2+ab+b^2\geq 3ab$
$\dfrac{a^3}{a^2+ab+b^2}=\dfrac{a^3+a^2b+ab^2-ab(a+b)}{a^2+ab+b^2}=a-\dfrac {ab(a+b)}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}---(1)$
likewise :$\dfrac{b^3}{b^2+bc+c^2}\geq b-\dfrac {b+c}{3}---(2)$
$\dfrac{c^3}{c^2+ca+a^2}\geq c-\dfrac {c+a}{3}---(3)$
$(1)+(2)+(3) $ we get the reslut
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top