Inequality Challenge: Prove $\sum \frac{x^3}{x^2+xy+y^2}\geq\frac{a+b+c}{3}$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary

Discussion Overview

The discussion centers around proving the inequality $\sum \frac{x^3}{x^2+xy+y^2}\geq\frac{a+b+c}{3}$ for natural numbers $a, b, c$. Participants explore the validity of this inequality under various conditions, including when $a, b, c$ are positive real numbers.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant asserts the inequality holds for $a, b, c \in \mathbb{N}$.
  • Another participant claims the result is true for $a, b, c > 0$ in general.
  • A further contribution suggests that the inequality also holds for $a, b, c \in \mathbb{R}^+$, providing a hint for the proof.

Areas of Agreement / Disagreement

Participants express differing views on the conditions under which the inequality holds, with some asserting it is valid for natural numbers while others extend the claim to positive real numbers. No consensus is reached on a definitive proof or the scope of the inequality.

Contextual Notes

The discussion does not clarify the assumptions or specific methods for proving the inequality, leaving potential gaps in the argumentation.

Albert1
Messages
1,221
Reaction score
0
$a,b,c \in N$,prove :
$\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\geq\dfrac{a+b+c}{3}$
 
Mathematics news on Phys.org
The result is true for $a,b,c>0$ in general.
By normalizing the inequality we may assume that $a+b+c=1$. $(*)$

Now rewrite the inequality we are to prove, that is
$$
\sum_{\text{cyclic}} \frac{a^3}{a^2+ab+b^2} \geq \frac{1}{3}\,,\qquad (**)
$$
as
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{3}\,.
$$

Observe that $x\mapsto 1/(1+x+x^2)$ is convex in $(0,\infty)$ because its second derivative is $\frac{6 \, {\left(x + 1\right)} x}{{\left(x^{2} + x + 1\right)}^{3}} > 0$, hence by Jensen's inequality with weights $a,b,c$ we get
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{1+\left(\sum_{\text{cyclic}}a\,(b/a)\right)+\left(\sum_{\text{cyclic}}a\,(b/a)\right)^2} = \frac{1}{1+1+1^2} =\frac{1}{3}\,.
$$

$(*)$ If $a+b+c=\lambda \neq 1$, make the change of variables $a \mapsto a/\lambda\,, b \mapsto b/\lambda \,, c \mapsto c/\lambda$ and the $\lambda$s will cancel out when considering both sides.

$(**)$ When we have variables $(a,b,c)$, the notation $\sum_{\text{cyclic}} f(a,b,c)$ simply means $f(a,b,c)+f(b,c,a)+f(c,a,b)$.
 
Albert said:
$a,b,c \in N$,prove :
$\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\geq\dfrac{a+b+c}{3}$
indeed even $a,b,c\in R^+$,this statement is also true
hint :
at first prove the following statement:
$a,b,c \in R^+$
$\dfrac{a^3}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}$
 
Albert said:
indeed even $a,b,c\in R^+$,this statement is also true
hint :
at first prove the following statement:
$a,b,c \in R^+$
$\dfrac{a^3}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}$
for $a^2+ab+b^2\geq 3ab$
$\dfrac{a^3}{a^2+ab+b^2}=\dfrac{a^3+a^2b+ab^2-ab(a+b)}{a^2+ab+b^2}=a-\dfrac {ab(a+b)}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}---(1)$
likewise :$\dfrac{b^3}{b^2+bc+c^2}\geq b-\dfrac {b+c}{3}---(2)$
$\dfrac{c^3}{c^2+ca+a^2}\geq c-\dfrac {c+a}{3}---(3)$
$(1)+(2)+(3) $ we get the reslut
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K