By normalizing the inequality we may assume that $a+b+c=1$. $(*)$
Now rewrite the inequality we are to prove, that is
$$
\sum_{\text{cyclic}} \frac{a^3}{a^2+ab+b^2} \geq \frac{1}{3}\,,\qquad (**)
$$
as
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{3}\,.
$$
Observe that $x\mapsto 1/(1+x+x^2)$ is convex in $(0,\infty)$ because its second derivative is $\frac{6 \, {\left(x + 1\right)} x}{{\left(x^{2} + x + 1\right)}^{3}} > 0$, hence by
Jensen's inequality with weights $a,b,c$ we get
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{1+\left(\sum_{\text{cyclic}}a\,(b/a)\right)+\left(\sum_{\text{cyclic}}a\,(b/a)\right)^2} = \frac{1}{1+1+1^2} =\frac{1}{3}\,.
$$
$(*)$ If $a+b+c=\lambda \neq 1$, make the change of variables $a \mapsto a/\lambda\,, b \mapsto b/\lambda \,, c \mapsto c/\lambda$ and the $\lambda$s will cancel out when considering both sides.
$(**)$ When we have variables $(a,b,c)$, the notation $\sum_{\text{cyclic}} f(a,b,c)$ simply means $f(a,b,c)+f(b,c,a)+f(c,a,b)$.