MHB Inequality Challenge: Prove $\sum \frac{x^3}{x^2+xy+y^2}\geq\frac{a+b+c}{3}$

Click For Summary
The discussion centers on proving the inequality $\sum \frac{x^3}{x^2+xy+y^2} \geq \frac{a+b+c}{3}$ for natural numbers $a, b, c$. Participants note that the inequality holds true for positive real numbers as well. The proof involves analyzing the terms on the left side and demonstrating their relationship to the average of $a, b, c$. Various mathematical techniques and inequalities may be employed to establish the validity of the statement. Overall, the inequality is affirmed to be true under the specified conditions.
Albert1
Messages
1,221
Reaction score
0
$a,b,c \in N$,prove :
$\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\geq\dfrac{a+b+c}{3}$
 
Mathematics news on Phys.org
The result is true for $a,b,c>0$ in general.
By normalizing the inequality we may assume that $a+b+c=1$. $(*)$

Now rewrite the inequality we are to prove, that is
$$
\sum_{\text{cyclic}} \frac{a^3}{a^2+ab+b^2} \geq \frac{1}{3}\,,\qquad (**)
$$
as
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{3}\,.
$$

Observe that $x\mapsto 1/(1+x+x^2)$ is convex in $(0,\infty)$ because its second derivative is $\frac{6 \, {\left(x + 1\right)} x}{{\left(x^{2} + x + 1\right)}^{3}} > 0$, hence by Jensen's inequality with weights $a,b,c$ we get
$$
\sum_{\text{cyclic}} \frac{a}{1+(b/a)+(b/a)^2} \geq \frac{1}{1+\left(\sum_{\text{cyclic}}a\,(b/a)\right)+\left(\sum_{\text{cyclic}}a\,(b/a)\right)^2} = \frac{1}{1+1+1^2} =\frac{1}{3}\,.
$$

$(*)$ If $a+b+c=\lambda \neq 1$, make the change of variables $a \mapsto a/\lambda\,, b \mapsto b/\lambda \,, c \mapsto c/\lambda$ and the $\lambda$s will cancel out when considering both sides.

$(**)$ When we have variables $(a,b,c)$, the notation $\sum_{\text{cyclic}} f(a,b,c)$ simply means $f(a,b,c)+f(b,c,a)+f(c,a,b)$.
 
Albert said:
$a,b,c \in N$,prove :
$\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\geq\dfrac{a+b+c}{3}$
indeed even $a,b,c\in R^+$,this statement is also true
hint :
at first prove the following statement:
$a,b,c \in R^+$
$\dfrac{a^3}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}$
 
Albert said:
indeed even $a,b,c\in R^+$,this statement is also true
hint :
at first prove the following statement:
$a,b,c \in R^+$
$\dfrac{a^3}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}$
for $a^2+ab+b^2\geq 3ab$
$\dfrac{a^3}{a^2+ab+b^2}=\dfrac{a^3+a^2b+ab^2-ab(a+b)}{a^2+ab+b^2}=a-\dfrac {ab(a+b)}{a^2+ab+b^2}\geq a-\dfrac {a+b}{3}---(1)$
likewise :$\dfrac{b^3}{b^2+bc+c^2}\geq b-\dfrac {b+c}{3}---(2)$
$\dfrac{c^3}{c^2+ca+a^2}\geq c-\dfrac {c+a}{3}---(3)$
$(1)+(2)+(3) $ we get the reslut
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K