MHB Inequality Challenge: Show $7x+12xy+5y \le 9$

AI Thread Summary
The discussion focuses on proving the inequality $7x + 12xy + 5y \le 9$ under the condition $9x^2 + 8xy + 7y^2 \le 6$. A graphical representation shows that the ellipse defined by the first inequality is contained within the region defined by the hyperbola of the second inequality. The point of tangency at $(1/2, 1/2)$ indicates that the two curves share a common tangent with a specific gradient. Participants acknowledge the value of both graphical and algebraic approaches to solving the problem. The conversation highlights the interplay between geometry and algebra in understanding inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x, y$ be real numbers such that $9x^2+8xy+7y^2 \le 6$.

Show that $7x+12xy+5y \le 9$.
 
Mathematics news on Phys.org
[sp]
[graph]1hbxwofxmo[/graph] [Click on the graph for a larger version.]

The blue curve is the ellipse $9x^2+8xy+7y^2 = 6$. The brown curve is the hyperbola $7x+12xy+5y = 9$. They share a common tangent at the point $(1/2,1/2)$, with gradient $-13/11.$ The interior of the ellipse is the region $9x^2+8xy+7y^2 \leqslant 6$, and the region between the two branches of the hyperbola is given by $7x+12xy+5y \leqslant 9$. From the geometry, it is clear that the first of those regions is contained in the second. I don't see a neat way to prove that algebraically, but I think this is one of those cases where a picture says more than an equation could.[/sp]
 
anemone said:
Let $x, y$ be real numbers such that $9x^2+8xy+7y^2 \le 6$.

Show that $7x+12xy+5y \le 9$.---(2)
Let $x, y$ be real numbers such that $9x^2+8xy+7y^2 \le 6 ----(1)$.
in fact we only have to discuss :x>0, and y>0
$9x^2+8xy+7y^2 \le 9x^2+4x^2+4y^2+7y^2$ (GM$\le AM)$
the equivalence exists only if x=y
so we have :$24x^2\le 6$
$\therefore x=y\le \dfrac{1}{2}$
$\therefore $ the left side of (2) :$\dfrac{7}{2}+\dfrac{12}{4}+\dfrac{5}{2}\le 9$
 
anemone said:
Let $x, y$ be real numbers such that $9x^2+8xy+7y^2 \le 6$.

Show that $7x+12xy+5y \le 9$.

Thank you to both of you, Opalg and Albert for participating. It's good to know there are many ways(graphical/algebraic) to solve a problem.

I think the solution proposed by other that wanted to share here is very similar to the concept of Albert, let's see:
If we let $x=a+\dfrac{1}{2}$ and $y=b+\dfrac{1}{2}$, where $a, b \in R$, the given inequality becomes

$9x^2+8xy+7y^2 \le 6$

$9\left( a+\dfrac{1}{2} \right)^2+8\left( a+\dfrac{1}{2} \right)\left( b+\dfrac{1}{2} \right)+7\left( b+\dfrac{1}{2} \right)^2 \le 6$

$13a+11b+8ab \le -(9a^2+7b^2)$

The inequality that we wanted to prove, its LHS after undergo the transformation turns to

$7x+12xy+5y=7\left( a+\dfrac{1}{2} \right)+12\left( a+\dfrac{1}{2} \right)\left( b+\dfrac{1}{2} \right)+5\left( b+\dfrac{1}{2} \right)=13a+11b+8ab+9 \le 9-(9a^2+7b^2) \le 9$

Adding 9 to both sides of the inequality $13a+11b+8ab \le -(9a^2+7b^2)$ gives

$7x+12xy+5y=13a+11b+8ab+9 \le 9-(9a^2+7b^2) \le 9$

and we are done.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
8
Views
2K
Back
Top