Inequality: $$-\frac{22}{24}h^2 ||f^{(4)}||_{\infty}\leq 0$$

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The inequality $$-\frac{22}{24}h^2 ||f^{(4)}||_{\infty} \leq 0$$ is analyzed in the context of Taylor expansions and finite difference approximations. The discussion confirms that the inequality does not hold unless the fourth derivatives at specific points share the same sign. The conclusion is that the best achievable bound is $$|\delta_{h,r}f(x)- f''(x)| \leq \frac{11}{12} h^2 ||f^{(4)}||_{\infty}$$, derived from the Taylor series expansions at points $x+h$, $x+2h$, and $x+3h$.

PREREQUISITES
  • Understanding of Taylor series expansions
  • Familiarity with finite difference methods
  • Knowledge of the properties of derivatives, particularly fourth derivatives
  • Basic proficiency in mathematical inequalities
NEXT STEPS
  • Study the implications of Taylor series in numerical analysis
  • Learn about finite difference approximations and their error analysis
  • Explore the behavior of higher-order derivatives in function approximation
  • Investigate the conditions under which inequalities involving derivatives hold
USEFUL FOR

Mathematicians, numerical analysts, and anyone involved in computational mathematics or numerical methods for solving differential equations will benefit from this discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Does the following inequality hold?

$$|-\frac{5}{24}h^2f^{(4)}(x_1)+\frac{64}{24}h^2f^{(4)}(x_2)-\frac{81}{24}h^2f^{(4)}(x_3)| \\ \leq |-\frac{5}{24}h^2+\frac{64}{24}h^2-\frac{81}{24}h^2|\max_x |f^{(4)}(x)| \\ = |-\frac{22}{24}h^2| ||f^{(4)}||_{\infty}= \frac{22}{24}h^2 ||f^{(4)}||_{\infty}$$

where $h>0$
 
Physics news on Phys.org
mathmari said:
Hey! :o

Does the following inequality hold?

$$|-\frac{5}{24}h^2f^{(4)}(x_1)+\frac{64}{24}h^2f^{(4)}(x_2)-\frac{81}{24}h^2f^{(4)}(x_3)| \\ \leq |-\frac{5}{24}h^2+\frac{64}{24}h^2-\frac{81}{24}h^2|\max_x |f^{(4)}(x)| \\ = |-\frac{22}{24}h^2| ||f^{(4)}||_{\infty}= \frac{22}{24}h^2 ||f^{(4)}||_{\infty}$$

where $h>0$
No, because $f^{(4)}(x_2)$ might have a different sign from $f^{(4)}(x_1)$ and $f^{(4)}(x_3)$. Unless you know that $f^{(4)}(x_1)$, $f^{(4)}(x_2)$ and $f^{(4)}(x_3)$ all have the same sign, the best you can say is that $$\left|-\frac{5}{24}h^2f^{(4)}(x_1)+\frac{64}{24}h^2f^{(4)}(x_2)-\frac{81}{24}h^2f^{(4)}(x_3)\right| \leqslant \left(\frac5{24} + \frac{64}{24} + \frac{81}{24}\right)h^2\|f^{(4)}\|_{\infty} = \frac{150}{24}h^2\|f^{(4)}\|_{\infty}.$$
 
I used the Taylor expansion three times, once for $f(x+h)$, once for $f(x+2h)$ and once for $f(x+3h)$ and the $f(x_1), f(x_2), f(x_3)$ of the above expression are the remainders of each expansion. Do we know if they have all the same sign?
 
I want to show that $$|\delta_{h,r}f(x)- f''(x)| \leq \frac{11}{12} h^2 ||f^{(4)}||_{\infty}$$ where $$\delta_{h,r}f(x)=\frac{1}{h^2} (2f(x)-5f(x+h)+4f(x+2h)-f(x+3h))$$

I applied the Taylor expanson at $f(x+h)$, $f(x+2h)$ and $f(x+3h)$ and $f(x_1), f(x_2), f(x_3)$ are the corresponding remainder of each expansion.

$$f(x+h)=f(x)+h f'(x)+\frac{h^2}{2} f''(x)+\frac{h^3}{6} f'''(x)+\frac{h^4}{24} f^{(4)}(x_1), x_1 \in (x,x+h)$$

$$f(x+2h)=f(x)+2hf'(x)+2h^2 f''(x)+\frac{4}{3} h^3 f'''(x)+\frac{16}{24}f^{(4)}(x_2), x_2 \in (x,x+2h)$$

$$f(x+3h)=f(x)+3hf'(x)+\frac{9}{2}h^2 f''(x)+\frac{27}{6}h^3 f'''(x)+\frac{81}{24} h^4 f^{(4)}(x_3), x_3 \in (x,x+3h)$$Substituting at $$\delta_{h,r}f(x)=\frac{1}{h^2} (2f(x)-5f(x+h)+4f(x+2h)-f(x+3h))$$ we get
$$\delta_{h,r}=f''(x)+\frac{h^2}{24}(64 f^{(4)}(x_2)-5f^{(4)}(x_1)-81 f^{(4)}(x_3))$$

Since $$|-\frac{5}{24}h^2f^{(4)}(x_1)+\frac{64}{24}h^2f^{(4)}(x_2)-\frac{81}{24}h^2f^{(4)}(x_3)| \\ \leq |-\frac{5}{24}h^2+\frac{64}{24}h^2-\frac{81}{24}h^2|\max_x |f^{(4)}(x)| \\ = |-\frac{22}{24}h^2| ||f^{(4)}||_{\infty}= \frac{22}{24}h^2 ||f^{(4)}||_{\infty}$$
we have

$$|\delta_{h,r}f(x)- f''(x)| \leq \frac{11}{12} h^2 ||f^{(4)}||_{\infty}$$

($h>0$)

Is this correct? Is there somewhere a mistake?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
Replies
7
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K