Inequality--is there an elegant way to solve this?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on proving the inequality \(xyz+\sqrt{x^2y^2+y^2z^2+x^2z^2}\ge \dfrac{4}{3}\sqrt{xyz(x+y+z)}\) under the constraints \(x,y,z > 0\) and \(x^2 + y^2 + z^2 = 1\). Participants suggest using Lagrange multipliers and spherical coordinates to find the minimum of the function \(f(x,y,z) = xyz + \sqrt{x^2y^2+y^2z^2+x^2z^2} - \frac{4}{3}\sqrt{xyz(x+y+z)}\). The goal is to verify that \(f(x_0,y_0,z_0) \ge 0\) for the optimal points derived from these methods.

PREREQUISITES
  • Understanding of inequalities in multivariable calculus
  • Familiarity with Lagrange multipliers
  • Knowledge of spherical coordinates
  • Basic proficiency in trigonometric identities
NEXT STEPS
  • Study the application of Lagrange multipliers in optimization problems
  • Learn how to convert Cartesian coordinates to spherical coordinates
  • Investigate the properties of symmetric inequalities
  • Review trigonometric identities relevant to optimization
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced inequality proofs and optimization techniques.

Dustinsfl
Messages
2,217
Reaction score
5
$x,y,z >0$ and $x^2 + y^2 + z^ = 1$, show that

$$xyz+\sqrt{x^2y^2+y^2z^2+x^2z^2}\ge \dfrac{4}{3}\sqrt{xyz(x+y+z)}$$
 
Physics news on Phys.org
Re: inequality--is there an elegant way to solve this?

I would try using Lagrange multipliers.
 
dwsmith said:
$x,y,z >0$ and $x^2 + y^2 + z^ = 1$, show that

$$xyz+\sqrt{x^2y^2+y^2z^2+x^2z^2}\ge \dfrac{4}{3}\sqrt{xyz(x+y+z)}$$

A way that doesn't require high level knowledege [even if non comfortable from the point od view of computation...] is fo find the point $\displaystyle (x_{0},y_{0}, z_{0})$ of minimum of the function... $\displaystyle f(x,y,z)= x\ y\ z + \sqrt{x^{2}\ y^{2}\ + x^{2}\ z^{2} + y^{2}\ z^{2}} - \frac{4}{3}\ \sqrt{x\ y\ z\ (x + y + z)}\ (1)$

... under the hypothesis that $\displaystyle x_{0}^{2} + y_{0}^{2}+ z_{0}^{2} = 1$ and then to verify that is $\displaystyle f(x_{0},y_{0},z_{0}) \ge 0$... Kind regards $\chi$ $\sigma$
 
Last edited:
chisigma said:
A way that doesn't require high level knowledege [even if non comfortable from the point od view of computation...] is fo find the point $\displaystyle (x_{0},y_{0}, z_{0})$ of minimum of the function... $\displaystyle f(x,y,z)= x\ y\ z + \sqrt{x^{2}\ y^{2}\ + x^{2}\ z^{2} + y^{2}\ z^{2}} - \frac{4}{3}\ \sqrt{x\ y\ z\ (x + y + z)}\ (1)$

... under the hypothesis that $\displaystyle x_{0}^{2} + y_{0}^{2}+ z_{0}^{2} = 1$ and then to verify that is $\displaystyle f(x_{0},y_{0},z_{0}) \ge 0$... Kind regards $\chi$ $\sigma$

And an 'elegant way' to do that is to use spherical coordinates...

$\displaystyle x= r\ \sin \theta\ \cos \phi$

$\displaystyle y = r\ \sin \theta\ \sin \phi$

$z=r\ \cos \theta\ (1)$... then evaluate the absolute minimum $\displaystyle (\theta_{0}, \phi_{0})$ of $\displaystyle f(1,\theta,\phi)$ and finally verify that $\displaystyle f(1,\theta_{0},\phi_{0}) \ge 0$... Kind regards $\chi$ $\sigma$
 
Last edited:
chisigma said:
And an 'elegant way' to do that is to use spherical coordinates...

$\displaystyle x= r\ \sin \theta\ \cos \phi$

$\displaystyle y = r\ \sin \theta\ \sin \phi$

$z=r\ \cos \theta\ (1)$... then evaluate the absolute minimum $\displaystyle (\theta_{0}, \phi_{0})$ of $\displaystyle f(1,\theta,\phi)$ and finally verify that $\displaystyle f(1,\theta_{0},\phi_{0}) \ge 0$... Kind regards $\chi$ $\sigma$
When we re-write $f$, we get

\begin{align}
f(1,\theta,\phi) &= \sqrt{\sin ^2(\theta ) \left(\sin ^2(\theta ) \sin ^2(\phi ) \cos ^2(\phi )+\cos ^2(\theta )\right)}+\sin ^2(\theta ) \cos (\theta ) \sin (\phi ) \cos (\phi )\\
&-\frac{4}{3} \sqrt{\sin ^2(\theta ) \cos (\theta ) \sin (\phi ) \cos (\phi ) (\sin (\theta ) (\sin (\phi )+\cos (\phi ))+\cos (\theta ))}
\end{align}

Are there some trig identities I need to be utilizing now?
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K