MHB Inequality of logarithm function

Click For Summary
The discussion centers on proving the inequality $\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$ for all real numbers a, b, and c that sum to 3. Participants share their solutions and approaches, with one user, MarkFL, receiving commendation for his method. The conversation highlights the importance of leveraging known inequalities to simplify the proof process. Various strategies are discussed, emphasizing the need for a solid understanding of logarithmic properties. The thread ultimately aims to establish a clear and rigorous proof of the stated inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that, for all real $a,\,b,\,c$ such that $a+b+c=3$, the following inequality holds:

$\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$
 
Mathematics news on Phys.org
My solution:

Let the objective function be:

$$f(a,b,c)=\log_3(1+a+b)\log_3(1+b+c)\log_3(1+a+c)$$

Using cyclic symmetry, we find that the extremum must occur for:

$$a=b=c=1$$

And:

$$f(1,1,1)=1$$

If we pick another point on the constraint, such as:

$$(a,b,c)=(3,0,0)$$

We find:

$$f(3,0,0)=0$$

Thus, we conclude:

$$f(a,b,c)\le1$$
 
MarkFL said:
My solution:

Let the objective function be:

$$f(a,b,c)=\log_3(1+a+b)\log_3(1+b+c)\log_3(1+a+c)$$

Using cyclic symmetry, we find that the extremum must occur for:

$$a=b=c=1$$

And:

$$f(1,1,1)=1$$

If we pick another point on the constraint, such as:

$$(a,b,c)=(3,0,0)$$

We find:

$$f(3,0,0)=0$$

Thus, we conclude:

$$f(a,b,c)\le1$$

Very good job, MarkFL!
 
My solution, guided by one inequality expert:

We're asked to prove $\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$, we could, since the RHS of the inequality is a $1$, by taking the cube root to both sides of the inequality and get:

$\sqrt[3]{\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)}\le \sqrt[3]{1}=1$

Therefore

$$\begin{align*}\sqrt[3]{\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)}&\le \frac{\log_3(1+a+b)+\log_3(1+b+c)+\log_3(1+c+a)}{3}\,\,\tiny{\text{by the AM-GM inequality}}\\&= \log_3(1+a+b)^{\frac{1}{3}}+\log_3(1+b+c)^{\frac{1}{3}}+\log_3(1+c+a)^{\frac{1}{3}}\\&=\log_3((1+a+b)(1+b+c)(1+c+a))^{\frac{1}{3}}\\&\le \log_3\left(\frac{1+a+b+1+b+c+1+c+a}{3}\right)\,\,\small{\text{again by the AM-GM inequality}}\\&=\log_3 \left(\frac{9}{3}\right)\\&=\log_3 3\\&=1\end{align*}$$
 

Similar threads

Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K