Inequality of logarithm function

Click For Summary
SUMMARY

The discussion centers on proving the inequality $\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$ for all real numbers $a$, $b$, and $c$ such that $a+b+c=3$. Participants, including MarkFL, provided solutions and insights, emphasizing the use of logarithmic properties and inequalities. The consensus confirms the validity of the inequality under the specified conditions, showcasing the application of mathematical reasoning in inequality proofs.

PREREQUISITES
  • Understanding of logarithmic functions, specifically $\log_3$.
  • Familiarity with basic algebraic manipulation and properties of inequalities.
  • Knowledge of the AM-GM inequality and its applications.
  • Ability to work with real numbers and their properties in mathematical proofs.
NEXT STEPS
  • Study the properties of logarithmic functions, focusing on $\log_3$ and its applications.
  • Explore the AM-GM inequality and its proofs to strengthen understanding of inequalities.
  • Investigate other inequalities involving logarithms and their proofs for broader applications.
  • Practice solving similar inequality problems to enhance problem-solving skills in mathematics.
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in advanced inequality proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that, for all real $a,\,b,\,c$ such that $a+b+c=3$, the following inequality holds:

$\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$
 
Mathematics news on Phys.org
My solution:

Let the objective function be:

$$f(a,b,c)=\log_3(1+a+b)\log_3(1+b+c)\log_3(1+a+c)$$

Using cyclic symmetry, we find that the extremum must occur for:

$$a=b=c=1$$

And:

$$f(1,1,1)=1$$

If we pick another point on the constraint, such as:

$$(a,b,c)=(3,0,0)$$

We find:

$$f(3,0,0)=0$$

Thus, we conclude:

$$f(a,b,c)\le1$$
 
MarkFL said:
My solution:

Let the objective function be:

$$f(a,b,c)=\log_3(1+a+b)\log_3(1+b+c)\log_3(1+a+c)$$

Using cyclic symmetry, we find that the extremum must occur for:

$$a=b=c=1$$

And:

$$f(1,1,1)=1$$

If we pick another point on the constraint, such as:

$$(a,b,c)=(3,0,0)$$

We find:

$$f(3,0,0)=0$$

Thus, we conclude:

$$f(a,b,c)\le1$$

Very good job, MarkFL!
 
My solution, guided by one inequality expert:

We're asked to prove $\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$, we could, since the RHS of the inequality is a $1$, by taking the cube root to both sides of the inequality and get:

$\sqrt[3]{\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)}\le \sqrt[3]{1}=1$

Therefore

$$\begin{align*}\sqrt[3]{\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)}&\le \frac{\log_3(1+a+b)+\log_3(1+b+c)+\log_3(1+c+a)}{3}\,\,\tiny{\text{by the AM-GM inequality}}\\&= \log_3(1+a+b)^{\frac{1}{3}}+\log_3(1+b+c)^{\frac{1}{3}}+\log_3(1+c+a)^{\frac{1}{3}}\\&=\log_3((1+a+b)(1+b+c)(1+c+a))^{\frac{1}{3}}\\&\le \log_3\left(\frac{1+a+b+1+b+c+1+c+a}{3}\right)\,\,\small{\text{again by the AM-GM inequality}}\\&=\log_3 \left(\frac{9}{3}\right)\\&=\log_3 3\\&=1\end{align*}$$
 

Similar threads

Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K