Inequality of logarithm function

Click For Summary

Discussion Overview

The discussion revolves around proving an inequality involving the logarithm function, specifically that for all real numbers \(a\), \(b\), and \(c\) such that \(a+b+c=3\), the product of logarithmic expressions is less than or equal to 1. The scope includes mathematical reasoning and potential proofs.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the inequality to be proven, stating the condition \(a+b+c=3\).
  • Another participant shares their solution approach, although the details are not provided.
  • A third participant acknowledges the previous solution positively, indicating it may have merit.
  • A fourth participant mentions their own solution, which was influenced by an expert in inequalities.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus, as multiple participants offer their own solutions without resolving the inequality or confirming any single approach as correct.

Contextual Notes

Details of the proposed solutions are not fully disclosed, leaving the mathematical steps and assumptions involved in the proofs unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that, for all real $a,\,b,\,c$ such that $a+b+c=3$, the following inequality holds:

$\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$
 
Mathematics news on Phys.org
My solution:

Let the objective function be:

$$f(a,b,c)=\log_3(1+a+b)\log_3(1+b+c)\log_3(1+a+c)$$

Using cyclic symmetry, we find that the extremum must occur for:

$$a=b=c=1$$

And:

$$f(1,1,1)=1$$

If we pick another point on the constraint, such as:

$$(a,b,c)=(3,0,0)$$

We find:

$$f(3,0,0)=0$$

Thus, we conclude:

$$f(a,b,c)\le1$$
 
MarkFL said:
My solution:

Let the objective function be:

$$f(a,b,c)=\log_3(1+a+b)\log_3(1+b+c)\log_3(1+a+c)$$

Using cyclic symmetry, we find that the extremum must occur for:

$$a=b=c=1$$

And:

$$f(1,1,1)=1$$

If we pick another point on the constraint, such as:

$$(a,b,c)=(3,0,0)$$

We find:

$$f(3,0,0)=0$$

Thus, we conclude:

$$f(a,b,c)\le1$$

Very good job, MarkFL!
 
My solution, guided by one inequality expert:

We're asked to prove $\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)\le 1$, we could, since the RHS of the inequality is a $1$, by taking the cube root to both sides of the inequality and get:

$\sqrt[3]{\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)}\le \sqrt[3]{1}=1$

Therefore

$$\begin{align*}\sqrt[3]{\log_3(1+a+b)\log_3(1+b+c)\log_3(1+c+a)}&\le \frac{\log_3(1+a+b)+\log_3(1+b+c)+\log_3(1+c+a)}{3}\,\,\tiny{\text{by the AM-GM inequality}}\\&= \log_3(1+a+b)^{\frac{1}{3}}+\log_3(1+b+c)^{\frac{1}{3}}+\log_3(1+c+a)^{\frac{1}{3}}\\&=\log_3((1+a+b)(1+b+c)(1+c+a))^{\frac{1}{3}}\\&\le \log_3\left(\frac{1+a+b+1+b+c+1+c+a}{3}\right)\,\,\small{\text{again by the AM-GM inequality}}\\&=\log_3 \left(\frac{9}{3}\right)\\&=\log_3 3\\&=1\end{align*}$$
 

Similar threads

Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K