- #1

bert2612

- 5

- 0

_{ij}where i,j [itex]\in[/itex]N (N=Natural Numbers)

∞...∞

[itex]\bigcup[/itex] ( [itex]\bigcap[/itex] A

_{ij})

i=0 j=0

is equal to

...∞

[itex]\bigcap[/itex]{([itex]\bigcup[/itex]A

_{ih(i)}:h[itex]\in[/itex]N

^{N}}

... i=0

please could someone point me in the right direction,

I can show that

∞...∞

[itex]\bigcup[/itex] ( [itex]\bigcap[/itex] A

_{ij})

i=0 j=0

is a subset of

∞...∞

[itex]\bigcap[/itex] ( [itex]\bigcup[/itex] A

_{ij})

i=0 j=0

however i am struggling with the function h(i) used in the above question to make the two sets equal

Thanks!