Infinite discontinuity question

Click For Summary
SUMMARY

The discussion centers on the continuity of a function at a specific point, particularly when ##a = 1##. Participants clarify that the function f(1) is indeed defined, contradicting the initial assertion of a vertical asymptote at that point. The graph for problem 6 confirms that f(1) shares the same value as f(3), establishing continuity. The conversation also touches on the importance of understanding problem-solving processes rather than solely relying on provided solutions.

PREREQUISITES
  • Understanding of function continuity and discontinuity
  • Familiarity with vertical asymptotes in calculus
  • Ability to interpret graphical representations of functions
  • Basic problem-solving skills in calculus
NEXT STEPS
  • Study the concept of vertical asymptotes in more depth
  • Learn how to analyze function continuity using graphical methods
  • Practice solving calculus problems related to continuity
  • Explore the implications of discontinuities in real-world applications
USEFUL FOR

Students studying calculus, educators teaching continuity concepts, and anyone seeking to improve their understanding of function behavior in mathematical analysis.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For 6(b),
1676575875785.png

The solution is,
1676575903178.png


However, for ##a = 1## they could have also said that f is not continuous since f(1) is not defined (vertical asymptote) correct?

Many thanks!
 
Physics news on Phys.org
Callumnc1 said:
Homework Statement:: Please see below
Relevant Equations:: Please see below

For 6(b),
View attachment 322376
The solution is,
View attachment 322377

However, for ##a = 1## they could have also said that f is not continuous since f(1) is not defined (vertical asymptote) correct?

Many thanks!
No.

The graph for problem 6. clearly shows that f(1) is defined. It appears to have the same value as f(3).
 
  • Like
Likes MatinSAR and member 731016
SammyS said:
No.

The graph for problem 6. clearly shows that f(1) is defined. It appears to have the same value as f(3).
Oh true! Thank you for you for help @SammyS!
 
Callumnc1 said:
Homework Statement:: Please see below
Relevant Equations:: Please see below

For 6(b),
View attachment 322376
The solution is,
View attachment 322377

However, for ##a = 1## they could have also said that f is not continuous since f(1) is not defined (vertical asymptote) correct?

Many thanks!
Do you attempt to do these problems yourself, or do you just look at the solutions? Usually, it seems, you also need help following the given solutions.
 
  • Like
Likes MatinSAR, SammyS and member 731016
PeroK said:
Do you attempt to do these problems yourself, or do you just look at the solutions? Usually, it seems, you also need help following the given solutions.
Thank you for your reply @PeroK!

I often attempt the problems myself, but I get it wrong and sometimes don't understand the solutions.

Many thanks!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
4K
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K