Problem:(adsbygoogle = window.adsbygoogle || []).push({});

Find the momentum-space wave function [itex] \Phi_n(p,t)[/itex] for the [itex]n[/itex]th stationary state of the infinite square well.

Equations:

[tex] \Psi_n(x,t) = \psi_n(x) \phi_n(t) [/tex]

[tex] \psi_n(x) = \sqrt{\frac{2}{a}}\sin(\frac{n\pi}{a}x) [/tex]

[tex] \phi_n(t) = e^{-iE_n t/\hbar} [/tex]

[tex] \Phi_n(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{-ipx/\hbar} \Psi_n(x,t) dx [/tex]

Attempt:

[tex] \Phi_n(p,t) = \frac{\phi_n(t)}{\sqrt{a\pi\hbar}} \int^{\infty}_{-\infty} e^{-ipx/\hbar} \sin(\frac{n\pi}{a}x) dx [/tex]

[tex] = \frac{\phi_n(t)}{\sqrt{a\pi\hbar}} \frac{1}{2i} \int^{\infty}_{-\infty}\Bigg(e^{i(\frac{n\pi}{a} - \frac{p}{\hbar})x} - e^{i(\frac{-p}{\hbar} - \frac{n\pi}{a})x}\Bigg) dx [/tex]

[tex] = \frac{\phi_n(t)}{\sqrt{a\pi\hbar}} \frac{1}{2i} 2\pi \Bigg(\delta(\frac{n\pi}{a} - \frac{p}{\hbar}) - \delta(\frac{p}{\hbar} + \frac{n\pi}{a})\Bigg) [/tex]

This doesn't seem right to me. Do I have this right, or am I missing something somewhere?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Infinite square well, momentum space

**Physics Forums | Science Articles, Homework Help, Discussion**