Hello. I am confused about a point in complex analysis. In my book Complex Analysis by Gamelin, the definition for an analytic function is given as :(adsbygoogle = window.adsbygoogle || []).push({});

a function f(z) isanalytic on the open setU if f(z) is (complex) differentiable at each point of U and the complex derivative f'(z) is continuous on U

p.45

Now, that is why I am shocked and confused to hear that there are functions that are infinitely differentiable but aren't analytic! It confuses me because we know that if a function is differentiable at a point p that means its continuous at that point. So if a function is inifinitely differentiable that means its continuous everywhere and its derivatives are continuous everywhere, right? Which is the definition of being analytic right? I have the same confusion for continuously differentiable functions which to my understanding are functions that are differentiable everywhere and their derivatives are continuous. Isn't that again all that is needed to show a function is analytic?

Thanks I am so confused!

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Infinitely differentiable vs. continuously differentiable vs. analytic?

Loading...

Similar Threads - Infinitely differentiable continuously | Date |
---|---|

Differentiable and non-differentiable at infinite points | Oct 27, 2013 |

Infinitely differentiable functions | May 14, 2012 |

Infinitely differentiable function | May 10, 2012 |

If f is infinitely differentiable and analytic on a dense set is f analytic? | Nov 24, 2011 |

How to prove if f(x) is infinitely differentiable | Oct 24, 2010 |

**Physics Forums - The Fusion of Science and Community**