I have across the following argument, which seems wrong to me, in a larger proof (Theorem 4 on page 9 of the document available at http://www.whitman.edu/mathematics/SeniorProjectArchive/2011/SeniorProject_JonathanWells.pdf). I would appreciate if someone can shed light on why this is true.(adsbygoogle = window.adsbygoogle || []).push({});

The argument is that given a sequence $a_k$ of points in [a,b], we can say that a sub-interval of [a,b] exists such that it is smaller than some value $g<b-a$ and contains an infinite number of terms from $a_k$.

I disagree with the above statement because lets say that the sequence $a_k$ always returns a constant value, say b. Then the above statement doesnt hold.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Infinte number of terms from a sequence in a sub-interval

**Physics Forums | Science Articles, Homework Help, Discussion**