MHB Integral equation by successive approximation

Click For Summary
The integral equation $$y(x)=1+2\int_0^x(t+y(t))dt$$ can be simplified to $$y(x)=1+x^2+2\int_0^xy(t)dt$$. By applying the method of successive approximation, the initial approximations yield $$y_1(x)=1+2x+x^2$$, $$y_2(x)=\frac{2}{3}x^3+3x^2+2x+1$$, and $$y_3(x)=\frac{1}{3}x^4+2x^3+3x^2+x+1$$. The challenge remains in finding a general formula for $$y_n(x)$$ to derive the limit solution $$y(x)$$. The exact solution to the integral equation is provided as $$y(x) = \frac{3\ e^{2\ x} - 2\ x - 1}{2}$$, which can guide further calculations.
Suvadip
Messages
68
Reaction score
0
I have to solve the integral equation $$y(x)=1+2\int_0^x(t+y(t))dt$$ by the method of successive approximation taking $$y_0(x)=1$$.

Sol: After simplification the given equation we have
$$y(x)=1+x^2+2\int_0^xy(t)dt$$. So comparing it with $$y(x)=f(x)+\lambda\int_0^x k(x,t)y(t))dt$$ we have

$$f(x)=1+x^2, \lambda=2, k(x,t)=1$$

Now let us use the relation
$$y_n(x)=f(x)+\lambda\int_0^x k(x,t)y_{n-1}(t))dt$$

Using this relation we have

$$y_1(x)=1+2x+x^2, y_2(x)=\frac{2}{3}x^3+3x^2+2x+1, y_3(x)=\frac{1}{3}x^4+2x^3+3x^2+x+1$$

Using these I am unable to find a general formula for $$y_n(x)$$ from which the required solution $$y(x)$$ can be found using $$y(x)=lim_{n \to \infty} y_n(x)$$

How should I proceed.
 
Mathematics news on Phys.org
suvadip said:
I have to solve the integral equation $$y(x)=1+2\int_0^x(t+y(t))dt$$ by the method of successive approximation taking $$y_0(x)=1$$.

Sol: After simplification the given equation we have
$$y(x)=1+x^2+2\int_0^xy(t)dt$$. So comparing it with $$y(x)=f(x)+\lambda\int_0^x k(x,t)y(t))dt$$ we have

$$f(x)=1+x^2, \lambda=2, k(x,t)=1$$

Now let us use the relation
$$y_n(x)=f(x)+\lambda\int_0^x k(x,t)y_{n-1}(t))dt$$

Using this relation we have

$$y_1(x)=1+2x+x^2, y_2(x)=\frac{2}{3}x^3+3x^2+2x+1, y_3(x)=\frac{1}{3}x^4+2x^3+3x^2+x+1$$

Using these I am unable to find a general formula for $$y_n(x)$$ from which the required solution $$y(x)$$ can be found using $$y(x)=lim_{n \to \infty} y_n(x)$$

How should I proceed.

Your application of the successive approximation method is correct and the result is obvious if You take into account the the 'exact' solution of the integral equation is...

$\displaystyle y(x) = \frac{3\ e^{2\ x} - 2\ x - 1}{2} = 1 + x + 3\ x^{2} + 2\ x^{3} + ... + \frac{3}{2}\ \frac{(2\ x)^{n}}{n!} + ...\ (1)$

Kind regards

$\chi$ $\sigma$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K