MHB Integral equation by successive approximation

AI Thread Summary
The integral equation $$y(x)=1+2\int_0^x(t+y(t))dt$$ can be simplified to $$y(x)=1+x^2+2\int_0^xy(t)dt$$. By applying the method of successive approximation, the initial approximations yield $$y_1(x)=1+2x+x^2$$, $$y_2(x)=\frac{2}{3}x^3+3x^2+2x+1$$, and $$y_3(x)=\frac{1}{3}x^4+2x^3+3x^2+x+1$$. The challenge remains in finding a general formula for $$y_n(x)$$ to derive the limit solution $$y(x)$$. The exact solution to the integral equation is provided as $$y(x) = \frac{3\ e^{2\ x} - 2\ x - 1}{2}$$, which can guide further calculations.
Suvadip
Messages
68
Reaction score
0
I have to solve the integral equation $$y(x)=1+2\int_0^x(t+y(t))dt$$ by the method of successive approximation taking $$y_0(x)=1$$.

Sol: After simplification the given equation we have
$$y(x)=1+x^2+2\int_0^xy(t)dt$$. So comparing it with $$y(x)=f(x)+\lambda\int_0^x k(x,t)y(t))dt$$ we have

$$f(x)=1+x^2, \lambda=2, k(x,t)=1$$

Now let us use the relation
$$y_n(x)=f(x)+\lambda\int_0^x k(x,t)y_{n-1}(t))dt$$

Using this relation we have

$$y_1(x)=1+2x+x^2, y_2(x)=\frac{2}{3}x^3+3x^2+2x+1, y_3(x)=\frac{1}{3}x^4+2x^3+3x^2+x+1$$

Using these I am unable to find a general formula for $$y_n(x)$$ from which the required solution $$y(x)$$ can be found using $$y(x)=lim_{n \to \infty} y_n(x)$$

How should I proceed.
 
Mathematics news on Phys.org
suvadip said:
I have to solve the integral equation $$y(x)=1+2\int_0^x(t+y(t))dt$$ by the method of successive approximation taking $$y_0(x)=1$$.

Sol: After simplification the given equation we have
$$y(x)=1+x^2+2\int_0^xy(t)dt$$. So comparing it with $$y(x)=f(x)+\lambda\int_0^x k(x,t)y(t))dt$$ we have

$$f(x)=1+x^2, \lambda=2, k(x,t)=1$$

Now let us use the relation
$$y_n(x)=f(x)+\lambda\int_0^x k(x,t)y_{n-1}(t))dt$$

Using this relation we have

$$y_1(x)=1+2x+x^2, y_2(x)=\frac{2}{3}x^3+3x^2+2x+1, y_3(x)=\frac{1}{3}x^4+2x^3+3x^2+x+1$$

Using these I am unable to find a general formula for $$y_n(x)$$ from which the required solution $$y(x)$$ can be found using $$y(x)=lim_{n \to \infty} y_n(x)$$

How should I proceed.

Your application of the successive approximation method is correct and the result is obvious if You take into account the the 'exact' solution of the integral equation is...

$\displaystyle y(x) = \frac{3\ e^{2\ x} - 2\ x - 1}{2} = 1 + x + 3\ x^{2} + 2\ x^{3} + ... + \frac{3}{2}\ \frac{(2\ x)^{n}}{n!} + ...\ (1)$

Kind regards

$\chi$ $\sigma$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top