MHB Integral Evluation: $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$

Click For Summary
The integral $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$ can be evaluated by recognizing that it can be expressed as the derivative of a function. By letting $$f(x) = \frac{ax+b}{(x^3+3x+1)^2}$$ and differentiating, the coefficients a and b can be determined as a = -1 and b = 0. This leads to the conclusion that the integral simplifies to $$-\frac{x}{(x^3+3x+1)^2} + \mathcal{C}$$. Additionally, alternative methods such as adding and subtracting terms in the numerator or using substitution are suggested for direct evaluation. The discussion emphasizes the utility of recognizing derivatives in simplifying integrals.
juantheron
Messages
243
Reaction score
1
Evaluation of $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$$\bf{My\;Try::}$ Let $\displaystyle f(x) = \frac{ax+b}{(x^3+3x+1)^2}.$ Now Diff. both side w. r to $x\;,$ We Get$\displaystyle \Rightarrow f'(x) = \left\{\frac{(x^3+3x+1)^2\cdot a-2\cdot (x^3+3x+1)\cdot (3x^2+3)\cdot (ax+b)}{(x^3+3x+1)^4}\right\} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \frac{(x^3+3x+1)\cdot a-6\cdot (x^2+1)\cdot (ax+b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}.$So $\displaystyle \frac{-5ax^3+6bx^2-3ax+(a-6b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$.So We Get $a = -1$ and $b = 0.$ So We Get $\displaystyle \frac{d}{dx}\left[f(x)\right] = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx = \int\frac{d}{dx}\left[f(x)\right]dx = f(x) = -\frac{x}{(x^3+3x+1)^2}+\mathcal{C}$But How we can Solve the above integral Directly.

Means Adding and subtracting in Numerator and taking something common

and Then Using Substitution Method , Thanks.
 
Physics news on Phys.org
jacks said:
Evaluation of $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$$\bf{My\;Try::}$ Let $\displaystyle f(x) = \frac{ax+b}{(x^3+3x+1)^2}.$ Now Diff. both side w. r to $x\;,$ We Get$\displaystyle \Rightarrow f'(x) = \left\{\frac{(x^3+3x+1)^2\cdot a-2\cdot (x^3+3x+1)\cdot (3x^2+3)\cdot (ax+b)}{(x^3+3x+1)^4}\right\} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \frac{(x^3+3x+1)\cdot a-6\cdot (x^2+1)\cdot (ax+b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}.$So $\displaystyle \frac{-5ax^3+6bx^2-3ax+(a-6b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$.So We Get $a = -1$ and $b = 0.$ So We Get $\displaystyle \frac{d}{dx}\left[f(x)\right] = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx = \int\frac{d}{dx}\left[f(x)\right]dx = f(x) = -\frac{x}{(x^3+3x+1)^2}+\mathcal{C}$But How we can Solve the above integral Directly.

Means Adding and subtracting in Numerator and taking something common

and Then Using Substitution Method , Thanks.

$\displaystyle \begin{align*} \int{ \frac{5x^3 + 3x - 1}{ \left( x^3 + 3x + 1 \right) ^3} \,\mathrm{d}x} &= \int{ \frac{\left( x^3 + 3x + 1 \right) \left( 5x^3 + 3x - 1 \right) }{ \left( x^3 + 3x + 1 \right) ^4 }\,\mathrm{d}x} \\ &= \int{ \frac{5x^6 + 18x^4 + 4x^3 + 9x^2 - 1}{ \left[ \left( x^3 + 3x + 1 \right) ^2 \right] ^2} \,\mathrm{d}x} \end{align*}$

Now because we have a square on the bottom, we MAY be able to make it look like a quotient rule expansion, recall $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left( \frac{u}{v} \right) = \frac{\frac{\mathrm{d}u}{\mathrm{d}x}\,v - u\,\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2} \end{align*}$, so we require $\displaystyle \begin{align*} v = \left( x^3 + 3x + 1 \right) ^2 \end{align*}$ and thus

$\displaystyle \begin{align*} \left( x^3 + 3x + 1 \right) ^2 \, \frac{\mathrm{d}u}{\mathrm{d}x} + 2\,\left( 3x^2 + 3 \right) \left( x^3 + 3x + 1 \right) \, u &= 5x^6 + 18x^4 + 4x^3 + 9x^2 - 1 \\ \frac{\mathrm{d}}{\mathrm{d}x} \, \left[ \left( x^3 + 3x + 1 \right) ^2 \, u \right] &= 5x^6 + 18x^4 + 4x^3 + 9x^2 - 1 \\ \left( x^3 + 3x + 1 \right) ^2 \, u &= \int{ 5x^6 + 18x^4 + 4x^3 + 9x^2 - 1 \,\mathrm{d}x } \\ \left( x^3 + 3x + 1 \right) ^2 \, u &= \frac{5x^7}{7} + \frac{18x^5}{5} + x^4 + 3x^3 - x + C \end{align*}$

Once you have found u, you should be able to write your original integrand as the derivative of a product. Then the answer will be obvious.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K