MHB Integral Evluation: $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$

Click For Summary
SUMMARY

The integral $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$ can be evaluated using the substitution method and differentiation of a function. By letting $$f(x) = \frac{ax+b}{(x^3+3x+1)^2}$$ and differentiating, it is established that $$a = -1$$ and $$b = 0$$, leading to the solution $$\int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx = -\frac{x}{(x^3+3x+1)^2} + \mathcal{C}$$. The discussion emphasizes the importance of recognizing patterns in the integrand that allow for simplification through substitution.

PREREQUISITES
  • Understanding of integral calculus and techniques for evaluating integrals
  • Familiarity with differentiation and the quotient rule
  • Knowledge of polynomial functions and their properties
  • Experience with substitution methods in integration
NEXT STEPS
  • Study the application of the substitution method in integral calculus
  • Learn about the quotient rule for differentiation in depth
  • Explore advanced techniques for evaluating integrals involving rational functions
  • Investigate the properties of polynomial functions and their derivatives
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral evaluation, and advanced algebraic techniques. This discussion is beneficial for anyone looking to enhance their skills in solving complex integrals.

juantheron
Messages
243
Reaction score
1
Evaluation of $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$$\bf{My\;Try::}$ Let $\displaystyle f(x) = \frac{ax+b}{(x^3+3x+1)^2}.$ Now Diff. both side w. r to $x\;,$ We Get$\displaystyle \Rightarrow f'(x) = \left\{\frac{(x^3+3x+1)^2\cdot a-2\cdot (x^3+3x+1)\cdot (3x^2+3)\cdot (ax+b)}{(x^3+3x+1)^4}\right\} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \frac{(x^3+3x+1)\cdot a-6\cdot (x^2+1)\cdot (ax+b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}.$So $\displaystyle \frac{-5ax^3+6bx^2-3ax+(a-6b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$.So We Get $a = -1$ and $b = 0.$ So We Get $\displaystyle \frac{d}{dx}\left[f(x)\right] = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx = \int\frac{d}{dx}\left[f(x)\right]dx = f(x) = -\frac{x}{(x^3+3x+1)^2}+\mathcal{C}$But How we can Solve the above integral Directly.

Means Adding and subtracting in Numerator and taking something common

and Then Using Substitution Method , Thanks.
 
Physics news on Phys.org
jacks said:
Evaluation of $$\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx$$$\bf{My\;Try::}$ Let $\displaystyle f(x) = \frac{ax+b}{(x^3+3x+1)^2}.$ Now Diff. both side w. r to $x\;,$ We Get$\displaystyle \Rightarrow f'(x) = \left\{\frac{(x^3+3x+1)^2\cdot a-2\cdot (x^3+3x+1)\cdot (3x^2+3)\cdot (ax+b)}{(x^3+3x+1)^4}\right\} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \frac{(x^3+3x+1)\cdot a-6\cdot (x^2+1)\cdot (ax+b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}.$So $\displaystyle \frac{-5ax^3+6bx^2-3ax+(a-6b)}{(x^3+3x+1)^3} = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$.So We Get $a = -1$ and $b = 0.$ So We Get $\displaystyle \frac{d}{dx}\left[f(x)\right] = \frac{5x^3+3x-1}{(x^3+3x+1)^3}$So $\displaystyle \int\frac{5x^3+3x-1}{(x^3+3x+1)^3}dx = \int\frac{d}{dx}\left[f(x)\right]dx = f(x) = -\frac{x}{(x^3+3x+1)^2}+\mathcal{C}$But How we can Solve the above integral Directly.

Means Adding and subtracting in Numerator and taking something common

and Then Using Substitution Method , Thanks.

$\displaystyle \begin{align*} \int{ \frac{5x^3 + 3x - 1}{ \left( x^3 + 3x + 1 \right) ^3} \,\mathrm{d}x} &= \int{ \frac{\left( x^3 + 3x + 1 \right) \left( 5x^3 + 3x - 1 \right) }{ \left( x^3 + 3x + 1 \right) ^4 }\,\mathrm{d}x} \\ &= \int{ \frac{5x^6 + 18x^4 + 4x^3 + 9x^2 - 1}{ \left[ \left( x^3 + 3x + 1 \right) ^2 \right] ^2} \,\mathrm{d}x} \end{align*}$

Now because we have a square on the bottom, we MAY be able to make it look like a quotient rule expansion, recall $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left( \frac{u}{v} \right) = \frac{\frac{\mathrm{d}u}{\mathrm{d}x}\,v - u\,\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2} \end{align*}$, so we require $\displaystyle \begin{align*} v = \left( x^3 + 3x + 1 \right) ^2 \end{align*}$ and thus

$\displaystyle \begin{align*} \left( x^3 + 3x + 1 \right) ^2 \, \frac{\mathrm{d}u}{\mathrm{d}x} + 2\,\left( 3x^2 + 3 \right) \left( x^3 + 3x + 1 \right) \, u &= 5x^6 + 18x^4 + 4x^3 + 9x^2 - 1 \\ \frac{\mathrm{d}}{\mathrm{d}x} \, \left[ \left( x^3 + 3x + 1 \right) ^2 \, u \right] &= 5x^6 + 18x^4 + 4x^3 + 9x^2 - 1 \\ \left( x^3 + 3x + 1 \right) ^2 \, u &= \int{ 5x^6 + 18x^4 + 4x^3 + 9x^2 - 1 \,\mathrm{d}x } \\ \left( x^3 + 3x + 1 \right) ^2 \, u &= \frac{5x^7}{7} + \frac{18x^5}{5} + x^4 + 3x^3 - x + C \end{align*}$

Once you have found u, you should be able to write your original integrand as the derivative of a product. Then the answer will be obvious.
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K