I Integral-form change of variable in differential equation

Jaime_mc2
Messages
8
Reaction score
9
I have the following differential equation, which is the general Sturm-Liouville problem,
$$
\dfrac{d}{dx} \left[ p(x) \dfrac{d\varphi}{dx} \right] + \left[ \lambda w(x) - q(x) \right] \varphi(x) = 0\ ,
$$
and I want to perform the change of variable
$$
x \rightarrow y = \int_a^x \sqrt{\lambda \dfrac{w(t)}{p(t)}}\, dt\ .
$$

I used the fundamental theorem of calculus to get
$$
\dfrac{dy}{dx} = \sqrt{\lambda\dfrac{w(x)}{p(x)}}\ ,
$$
and get the differentiation operator with respect to the new variable as
$$
\dfrac{d}{dx} = \dfrac{dy}{dx}\dfrac{d}{dy} = \sqrt{\lambda\dfrac{w(x)}{p(x)}} \dfrac{d}{dy}\ .
$$

My question is about how do I get the differential equation to be expressed in terms of ##y##. My first thought was realising that ##\varphi(x)## could just be expressed as ##\varphi(y)## if there exists an inversion such that ##x = x(y)##. Then I just extended this idea to ##w##, ##p## and ##q##, and I arrived to the equation
$$
\dfrac{d}{dy} \left[ \sqrt{w(y)p(y)} \dfrac{d\varphi}{dy} \right] + \left[ \sqrt{w(y)p(y)} - \dfrac{q(y)}{\lambda} \sqrt{\dfrac{p(y)}{w(y)}} \right] \varphi(y) = 0\ .
$$

Is this approach correct?
 
Physics news on Phys.org
I observe if you choose w as w=q, the equation becomes easy enough to solve.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
869