Integral Inequality: Prove $\left|f\left(\frac{1}{2}\right)\right|$ Bound

  • Context: MHB 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Inequality Integral
Click For Summary
SUMMARY

The integral inequality states that for a continuously differentiable function \( f : [0,1] \to \mathbb{R} \), the bound \( \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt \) holds. The discussion highlights the importance of considering the minimum values of \( f \) in the intervals \([0,\frac{1}{2}]\) and \([\frac{1}{2},1]\) to derive the inequality. Two solutions were proposed, both leading to the same conclusion, confirming the validity of the inequality.

PREREQUISITES
  • Understanding of integral calculus, specifically Riemann sums.
  • Knowledge of properties of continuously differentiable functions.
  • Familiarity with the concept of bounds in mathematical analysis.
  • Basic understanding of the Mean Value Theorem.
NEXT STEPS
  • Study the application of the Mean Value Theorem in proving inequalities.
  • Explore Riemann sums and their role in approximating integrals.
  • Investigate other integral inequalities, such as Jensen's inequality.
  • Learn about the implications of differentiability on the behavior of functions.
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in advanced mathematical analysis, particularly those studying inequalities and properties of differentiable functions.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.
 
Physics news on Phys.org
Euge said:
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.

Nice challenge! ;)

We have:
$$f(x)=\int_0^x f'(t)\,dt \le \int_0^x |f'(t)|\,dt$$
If $f(x)<0$, we have:
$$-f(x)=\int_0^x -f'(t)\,dt \le \int_0^x |f'(t)|\,dt$$
Therefore:
$$|f(x)| \le \int_0^x |f'(t)|\,dt$$
It follows that:
$$\left|f\left(\frac 12\right)\right| \le \int_0^{1/2} |f'(t)|\,dt$$
By symmetry (or substitution of $u=1-t$):
$$\left|f\left(\frac 12\right)\right| \le \int_{1/2}^1 |f'(t)|\,dt$$
Adding them up and dividing by 2 tells us that:
$$\left|f\left(\frac 12\right)\right| \le \frac 12\int_0^1 |f'(t)|\,dt$$
And since $\int_0^1 |f(t)|\,dt \ge 0$, the requested result follows.
 
I'm glad you liked the challenge, ILS! You have a very good attempt, but you started out with an error in the first line. If you take $f(x) = 1$, then

$\displaystyle \int_0^{1/2}f'(t)\, dt = 0 \neq 1 = f\left(\frac{1}{2}\right)$.
 
Euge said:
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.
[sp]Replacing $f$ by $-f$ if necessary, we may assume that $f\bigl(\frac12\bigr) \geqslant0.$

Suppost that the minimum value of $f$ in the interval $\bigl[0,\frac12\bigr]$ occurs at $a$, and the minimum value of $f$ in the interval $\bigl[\frac12,1\bigr]$ occurs at $b$. Then $\frac12\bigl(f(a) + f(b)\bigr)$ is the lower Riemann sum for $$\int_0^1f(t)\,dt$$ corresponding to the dissection $\{0,\frac12,1\}$, so that $$\tfrac12\bigl(f(a) + f(b)\bigr) \leqslant \int_0^1f(t)\,dt.$$

Next, $$\int_{1/ 2}^bf'(t)\,dt - \int_a^{1/ 2}f'(t)\,dt = f(b) - f\bigl(\tfrac12\bigr) - f\bigl(\tfrac12\bigr) + f(a).$$ It follows that $$\begin{aligned} f\bigl(\tfrac12\bigr) &= \tfrac12\!\bigl(f(a) + f(b)\bigr) + \tfrac12\!\!\int_a^{1/ 2}f'(t)\,dt - \tfrac12\!\!\int_{1/ 2}^bf'(t)\,dt \\ &\leqslant \int_0^1f(t)\,dt + \tfrac12\!\!\int_a^b|f'(t)|\,dt \\ &\leqslant \int_0^1|f(t)|\,dt + \tfrac12\!\!\int_0^1|f'(t)|\,dt. \end{aligned}$$[/sp]
 
Opalg said:
[sp]Replacing $f$ by $-f$ if necessary, we may assume that $f\bigl(\frac12\bigr) \geqslant0.$

Suppost that the minimum value of $f$ in the interval $\bigl[0,\frac12\bigr]$ occurs at $a$, and the minimum value of $f$ in the interval $\bigl[\frac12,1\bigr]$ occurs at $b$. Then $\frac12\bigl(f(a) + f(b)\bigr)$ is the lower Riemann sum for $$\int_0^1f(t)\,dt$$ corresponding to the dissection $\{0,\frac12,1\}$, so that $$\tfrac12\bigl(f(a) + f(b)\bigr) \leqslant \int_0^1f(t)\,dt.$$

Next, $$\int_{1/ 2}^bf'(t)\,dt - \int_a^{1/ 2}f'(t)\,dt = f(b) - f\bigl(\tfrac12\bigr) - f\bigl(\tfrac12\bigr) + f(a).$$ It follows that $$\begin{aligned} f\bigl(\tfrac12\bigr) &= \tfrac12\!\bigl(f(a) + f(b)\bigr) + \tfrac12\!\!\int_a^{1/ 2}f'(t)\,dt - \tfrac12\!\!\int_{1/ 2}^bf'(t)\,dt \\ &\leqslant \int_0^1f(t)\,dt + \tfrac12\!\!\int_a^b|f'(t)|\,dt \\ &\leqslant \int_0^1|f(t)|\,dt + \tfrac12\!\!\int_0^1|f'(t)|\,dt. \end{aligned}$$[/sp]

This is an excellent solution. Thanks Opalg for participating!
 
I will show two of my solutions, both leading to the same equation that implies the result.

Solution 1.
By integration by parts,

$\displaystyle \int_0^1 f(t)\, dt = \int_0^{1/2} f(t)\, dt + \int_{1/2}^1 f(t)\, dt = \left(\frac{f\bigl(\tfrac{1}{2}\bigr)}{2} - \int_0^{1/2} tf'(t)\, dt\right) + \left(\frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 (1 - t)f'(t)\, dt\right) = f\bigl(\tfrac1{2}\bigr) - \int_0^{1/2} tf'(t)\, dt + \int_{1/2}^1 (1 - t)f'(t)\, dt.$

So,

$\displaystyle f\bigl(\tfrac1{2}\bigr) = \int_0^1 f(t)\, dt + \int_0^{1/2} tf'(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt$,

and thus

$\displaystyle |f\bigl(\tfrac1{2}\bigr)| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^{1/2} |f'(t)|\, dt + \frac1{2}\int_{1/2}^1 |f'(t)|\, dt = \int_0^1 |f'(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt.$

Solution 2.
For all $x \ge \tfrac1{2}$,

$\displaystyle f(x) = f\bigl(\tfrac1{2}\bigr) + \int_{1/2}^x f'(t)\, dt$.

Therefore

$\displaystyle \int_{1/2}^1 f(t)\, dt = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 \int_{1/2}^x f'(t)\, dt\, dx = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 \int_t^1 f'(t)\, dx\, dt$
$\displaystyle = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 (1 - t)f'(t)\, dt.$

Now we can write

$\displaystyle \frac{f\bigl(\tfrac1{2}\bigr)}{2} = \int_{1/2}^1 f(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt.$

By a symmetric argument,

$\displaystyle \frac{f\bigl(\tfrac1{2}\bigr)}{2} = \int_0^{1/2} f(t)\, dt + \int_0^1 tf'(t)\, dt$.

Adding the latter two equations,

$\displaystyle f\bigl(\tfrac1{2}\bigr) = \int_0^1 f(t)\, dt + \int_0^{1/2} tf'(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt.$

This leads to the result in exactly the same way as Solution 1.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
373
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K