MHB Integral Inequality: Prove $\left|f\left(\frac{1}{2}\right)\right|$ Bound

AI Thread Summary
The discussion centers on proving the inequality $\left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$ for a continuously differentiable function $f$ defined on the interval [0,1]. Participants analyze various approaches, including considering the minimum values of $f$ on subintervals and using Riemann sums to establish bounds. A key point made is that replacing $f$ with $-f$ allows for the assumption that $f\left(\frac{1}{2}\right) \geq 0$. The discussion highlights the mathematical rigor involved in deriving the inequality through integration and properties of differentiable functions. The thread concludes with acknowledgment of effective solutions presented by participants.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.
 
Mathematics news on Phys.org
Euge said:
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.

Nice challenge! ;)

We have:
$$f(x)=\int_0^x f'(t)\,dt \le \int_0^x |f'(t)|\,dt$$
If $f(x)<0$, we have:
$$-f(x)=\int_0^x -f'(t)\,dt \le \int_0^x |f'(t)|\,dt$$
Therefore:
$$|f(x)| \le \int_0^x |f'(t)|\,dt$$
It follows that:
$$\left|f\left(\frac 12\right)\right| \le \int_0^{1/2} |f'(t)|\,dt$$
By symmetry (or substitution of $u=1-t$):
$$\left|f\left(\frac 12\right)\right| \le \int_{1/2}^1 |f'(t)|\,dt$$
Adding them up and dividing by 2 tells us that:
$$\left|f\left(\frac 12\right)\right| \le \frac 12\int_0^1 |f'(t)|\,dt$$
And since $\int_0^1 |f(t)|\,dt \ge 0$, the requested result follows.
 
I'm glad you liked the challenge, ILS! You have a very good attempt, but you started out with an error in the first line. If you take $f(x) = 1$, then

$\displaystyle \int_0^{1/2}f'(t)\, dt = 0 \neq 1 = f\left(\frac{1}{2}\right)$.
 
Euge said:
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.
[sp]Replacing $f$ by $-f$ if necessary, we may assume that $f\bigl(\frac12\bigr) \geqslant0.$

Suppost that the minimum value of $f$ in the interval $\bigl[0,\frac12\bigr]$ occurs at $a$, and the minimum value of $f$ in the interval $\bigl[\frac12,1\bigr]$ occurs at $b$. Then $\frac12\bigl(f(a) + f(b)\bigr)$ is the lower Riemann sum for $$\int_0^1f(t)\,dt$$ corresponding to the dissection $\{0,\frac12,1\}$, so that $$\tfrac12\bigl(f(a) + f(b)\bigr) \leqslant \int_0^1f(t)\,dt.$$

Next, $$\int_{1/ 2}^bf'(t)\,dt - \int_a^{1/ 2}f'(t)\,dt = f(b) - f\bigl(\tfrac12\bigr) - f\bigl(\tfrac12\bigr) + f(a).$$ It follows that $$\begin{aligned} f\bigl(\tfrac12\bigr) &= \tfrac12\!\bigl(f(a) + f(b)\bigr) + \tfrac12\!\!\int_a^{1/ 2}f'(t)\,dt - \tfrac12\!\!\int_{1/ 2}^bf'(t)\,dt \\ &\leqslant \int_0^1f(t)\,dt + \tfrac12\!\!\int_a^b|f'(t)|\,dt \\ &\leqslant \int_0^1|f(t)|\,dt + \tfrac12\!\!\int_0^1|f'(t)|\,dt. \end{aligned}$$[/sp]
 
Opalg said:
[sp]Replacing $f$ by $-f$ if necessary, we may assume that $f\bigl(\frac12\bigr) \geqslant0.$

Suppost that the minimum value of $f$ in the interval $\bigl[0,\frac12\bigr]$ occurs at $a$, and the minimum value of $f$ in the interval $\bigl[\frac12,1\bigr]$ occurs at $b$. Then $\frac12\bigl(f(a) + f(b)\bigr)$ is the lower Riemann sum for $$\int_0^1f(t)\,dt$$ corresponding to the dissection $\{0,\frac12,1\}$, so that $$\tfrac12\bigl(f(a) + f(b)\bigr) \leqslant \int_0^1f(t)\,dt.$$

Next, $$\int_{1/ 2}^bf'(t)\,dt - \int_a^{1/ 2}f'(t)\,dt = f(b) - f\bigl(\tfrac12\bigr) - f\bigl(\tfrac12\bigr) + f(a).$$ It follows that $$\begin{aligned} f\bigl(\tfrac12\bigr) &= \tfrac12\!\bigl(f(a) + f(b)\bigr) + \tfrac12\!\!\int_a^{1/ 2}f'(t)\,dt - \tfrac12\!\!\int_{1/ 2}^bf'(t)\,dt \\ &\leqslant \int_0^1f(t)\,dt + \tfrac12\!\!\int_a^b|f'(t)|\,dt \\ &\leqslant \int_0^1|f(t)|\,dt + \tfrac12\!\!\int_0^1|f'(t)|\,dt. \end{aligned}$$[/sp]

This is an excellent solution. Thanks Opalg for participating!
 
I will show two of my solutions, both leading to the same equation that implies the result.

Solution 1.
By integration by parts,

$\displaystyle \int_0^1 f(t)\, dt = \int_0^{1/2} f(t)\, dt + \int_{1/2}^1 f(t)\, dt = \left(\frac{f\bigl(\tfrac{1}{2}\bigr)}{2} - \int_0^{1/2} tf'(t)\, dt\right) + \left(\frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 (1 - t)f'(t)\, dt\right) = f\bigl(\tfrac1{2}\bigr) - \int_0^{1/2} tf'(t)\, dt + \int_{1/2}^1 (1 - t)f'(t)\, dt.$

So,

$\displaystyle f\bigl(\tfrac1{2}\bigr) = \int_0^1 f(t)\, dt + \int_0^{1/2} tf'(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt$,

and thus

$\displaystyle |f\bigl(\tfrac1{2}\bigr)| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^{1/2} |f'(t)|\, dt + \frac1{2}\int_{1/2}^1 |f'(t)|\, dt = \int_0^1 |f'(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt.$

Solution 2.
For all $x \ge \tfrac1{2}$,

$\displaystyle f(x) = f\bigl(\tfrac1{2}\bigr) + \int_{1/2}^x f'(t)\, dt$.

Therefore

$\displaystyle \int_{1/2}^1 f(t)\, dt = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 \int_{1/2}^x f'(t)\, dt\, dx = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 \int_t^1 f'(t)\, dx\, dt$
$\displaystyle = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 (1 - t)f'(t)\, dt.$

Now we can write

$\displaystyle \frac{f\bigl(\tfrac1{2}\bigr)}{2} = \int_{1/2}^1 f(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt.$

By a symmetric argument,

$\displaystyle \frac{f\bigl(\tfrac1{2}\bigr)}{2} = \int_0^{1/2} f(t)\, dt + \int_0^1 tf'(t)\, dt$.

Adding the latter two equations,

$\displaystyle f\bigl(\tfrac1{2}\bigr) = \int_0^1 f(t)\, dt + \int_0^{1/2} tf'(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt.$

This leads to the result in exactly the same way as Solution 1.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top