Integral Inequality: Prove $\left|f\left(\frac{1}{2}\right)\right|$ Bound

  • Context: MHB 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Inequality Integral
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality $\left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$ for a continuously differentiable function $f : [0,1] \to \mathbb{R}$. Participants explore various approaches and reasoning related to this mathematical challenge.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose starting with the assumption that $f\left(\frac{1}{2}\right) \geq 0$ by replacing $f$ with $-f$ if necessary.
  • One participant challenges an earlier claim by providing a counterexample with $f(x) = 1$, indicating a potential flaw in the reasoning presented.
  • Another participant elaborates on the minimum values of $f$ in the intervals $[0,\frac{1}{2}]$ and $[\frac{1}{2},1]$, suggesting that the lower Riemann sum can be used to establish the inequality.
  • Multiple participants present detailed steps leading to the same conclusion, but the methods vary, indicating different approaches to the problem.

Areas of Agreement / Disagreement

The discussion contains multiple competing views and approaches, with no consensus reached on a single method or solution. Participants express differing opinions on the validity of certain steps and examples.

Contextual Notes

Some arguments rely on specific assumptions about the behavior of $f$ and its derivative, which may not hold universally. The discussion includes unresolved mathematical steps and varying interpretations of the inequality.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.
 
Physics news on Phys.org
Euge said:
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.

Nice challenge! ;)

We have:
$$f(x)=\int_0^x f'(t)\,dt \le \int_0^x |f'(t)|\,dt$$
If $f(x)<0$, we have:
$$-f(x)=\int_0^x -f'(t)\,dt \le \int_0^x |f'(t)|\,dt$$
Therefore:
$$|f(x)| \le \int_0^x |f'(t)|\,dt$$
It follows that:
$$\left|f\left(\frac 12\right)\right| \le \int_0^{1/2} |f'(t)|\,dt$$
By symmetry (or substitution of $u=1-t$):
$$\left|f\left(\frac 12\right)\right| \le \int_{1/2}^1 |f'(t)|\,dt$$
Adding them up and dividing by 2 tells us that:
$$\left|f\left(\frac 12\right)\right| \le \frac 12\int_0^1 |f'(t)|\,dt$$
And since $\int_0^1 |f(t)|\,dt \ge 0$, the requested result follows.
 
I'm glad you liked the challenge, ILS! You have a very good attempt, but you started out with an error in the first line. If you take $f(x) = 1$, then

$\displaystyle \int_0^{1/2}f'(t)\, dt = 0 \neq 1 = f\left(\frac{1}{2}\right)$.
 
Euge said:
Here's my first challenge!

Let $f : [0,1] \to \Bbb R$ be continuously differentiable. Show that

$\displaystyle \left|f\left(\frac{1}{2}\right)\right| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt$.
[sp]Replacing $f$ by $-f$ if necessary, we may assume that $f\bigl(\frac12\bigr) \geqslant0.$

Suppost that the minimum value of $f$ in the interval $\bigl[0,\frac12\bigr]$ occurs at $a$, and the minimum value of $f$ in the interval $\bigl[\frac12,1\bigr]$ occurs at $b$. Then $\frac12\bigl(f(a) + f(b)\bigr)$ is the lower Riemann sum for $$\int_0^1f(t)\,dt$$ corresponding to the dissection $\{0,\frac12,1\}$, so that $$\tfrac12\bigl(f(a) + f(b)\bigr) \leqslant \int_0^1f(t)\,dt.$$

Next, $$\int_{1/ 2}^bf'(t)\,dt - \int_a^{1/ 2}f'(t)\,dt = f(b) - f\bigl(\tfrac12\bigr) - f\bigl(\tfrac12\bigr) + f(a).$$ It follows that $$\begin{aligned} f\bigl(\tfrac12\bigr) &= \tfrac12\!\bigl(f(a) + f(b)\bigr) + \tfrac12\!\!\int_a^{1/ 2}f'(t)\,dt - \tfrac12\!\!\int_{1/ 2}^bf'(t)\,dt \\ &\leqslant \int_0^1f(t)\,dt + \tfrac12\!\!\int_a^b|f'(t)|\,dt \\ &\leqslant \int_0^1|f(t)|\,dt + \tfrac12\!\!\int_0^1|f'(t)|\,dt. \end{aligned}$$[/sp]
 
Opalg said:
[sp]Replacing $f$ by $-f$ if necessary, we may assume that $f\bigl(\frac12\bigr) \geqslant0.$

Suppost that the minimum value of $f$ in the interval $\bigl[0,\frac12\bigr]$ occurs at $a$, and the minimum value of $f$ in the interval $\bigl[\frac12,1\bigr]$ occurs at $b$. Then $\frac12\bigl(f(a) + f(b)\bigr)$ is the lower Riemann sum for $$\int_0^1f(t)\,dt$$ corresponding to the dissection $\{0,\frac12,1\}$, so that $$\tfrac12\bigl(f(a) + f(b)\bigr) \leqslant \int_0^1f(t)\,dt.$$

Next, $$\int_{1/ 2}^bf'(t)\,dt - \int_a^{1/ 2}f'(t)\,dt = f(b) - f\bigl(\tfrac12\bigr) - f\bigl(\tfrac12\bigr) + f(a).$$ It follows that $$\begin{aligned} f\bigl(\tfrac12\bigr) &= \tfrac12\!\bigl(f(a) + f(b)\bigr) + \tfrac12\!\!\int_a^{1/ 2}f'(t)\,dt - \tfrac12\!\!\int_{1/ 2}^bf'(t)\,dt \\ &\leqslant \int_0^1f(t)\,dt + \tfrac12\!\!\int_a^b|f'(t)|\,dt \\ &\leqslant \int_0^1|f(t)|\,dt + \tfrac12\!\!\int_0^1|f'(t)|\,dt. \end{aligned}$$[/sp]

This is an excellent solution. Thanks Opalg for participating!
 
I will show two of my solutions, both leading to the same equation that implies the result.

Solution 1.
By integration by parts,

$\displaystyle \int_0^1 f(t)\, dt = \int_0^{1/2} f(t)\, dt + \int_{1/2}^1 f(t)\, dt = \left(\frac{f\bigl(\tfrac{1}{2}\bigr)}{2} - \int_0^{1/2} tf'(t)\, dt\right) + \left(\frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 (1 - t)f'(t)\, dt\right) = f\bigl(\tfrac1{2}\bigr) - \int_0^{1/2} tf'(t)\, dt + \int_{1/2}^1 (1 - t)f'(t)\, dt.$

So,

$\displaystyle f\bigl(\tfrac1{2}\bigr) = \int_0^1 f(t)\, dt + \int_0^{1/2} tf'(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt$,

and thus

$\displaystyle |f\bigl(\tfrac1{2}\bigr)| \le \int_0^1 |f(t)|\, dt + \frac{1}{2}\int_0^{1/2} |f'(t)|\, dt + \frac1{2}\int_{1/2}^1 |f'(t)|\, dt = \int_0^1 |f'(t)|\, dt + \frac{1}{2}\int_0^1 |f'(t)|\, dt.$

Solution 2.
For all $x \ge \tfrac1{2}$,

$\displaystyle f(x) = f\bigl(\tfrac1{2}\bigr) + \int_{1/2}^x f'(t)\, dt$.

Therefore

$\displaystyle \int_{1/2}^1 f(t)\, dt = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 \int_{1/2}^x f'(t)\, dt\, dx = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 \int_t^1 f'(t)\, dx\, dt$
$\displaystyle = \frac{f\bigl(\tfrac1{2}\bigr)}{2} + \int_{1/2}^1 (1 - t)f'(t)\, dt.$

Now we can write

$\displaystyle \frac{f\bigl(\tfrac1{2}\bigr)}{2} = \int_{1/2}^1 f(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt.$

By a symmetric argument,

$\displaystyle \frac{f\bigl(\tfrac1{2}\bigr)}{2} = \int_0^{1/2} f(t)\, dt + \int_0^1 tf'(t)\, dt$.

Adding the latter two equations,

$\displaystyle f\bigl(\tfrac1{2}\bigr) = \int_0^1 f(t)\, dt + \int_0^{1/2} tf'(t)\, dt - \int_{1/2}^1 (1 - t)f'(t)\, dt.$

This leads to the result in exactly the same way as Solution 1.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
522
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K