MHB Integral Proofs: $|a| \le \frac{\pi}{2}$ and $|a| \le \pi$

Click For Summary
The discussion focuses on proving two integral identities involving cosine and sine functions, specifically for the cases where |a| ≤ π/2 and |a| ≤ π. The first integral, involving cosine, is evaluated using contour integration, revealing that the singularities at x = ±1 are removable. The proof shows that for |a| < π/2, the integral simplifies to π/2 cos(a). The second integral, involving sine, is similarly evaluated, leading to the conclusion that it equals π/2 sin(a) for |a| ≤ π. The results highlight the importance of contour integration in evaluating these types of integrals.
polygamma
Messages
227
Reaction score
0
Show that for $|a| \le \frac{\pi}{2}$,

$$\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{\pi}{2} \cos a$$Similarly, show that for $|a| \le \pi$,

$$ \int_{0}^{\infty} \frac{\sin (\pi x) \sin(ax)}{1-x^{2}} \ dx = \frac{\pi}{2} \sin a $$
 
Last edited:
Mathematics news on Phys.org
These integrals come from a section in a PDE book on the Fourier integral representation.

But I'm going to use contour integration to evaluate the first one.First notice that the singularities at $x=1$ and $x=-1$ are removable.

$$ \int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{4} \int_{-\infty}^{\infty} \frac{\cos[(a-\frac{\pi}{2})x] + \cos[(a+\frac{\pi}{2})x]}{1-x^{2}} \ dx$$

$$ = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x} + e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} \ dx + \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx $$

If $|a| < \frac{\pi}{2}$,

$$ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} \ dx = - i \pi \text{Res}\Big[ \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}}, -1 \Big] - i \pi \text{Res}\Big[ \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} ,1 \Big]$$

$$ = \frac{i \pi}{2} \Big(-e^{-i(a- \frac{\pi}{2})} + e^{i(a- \frac{\pi}{2})} \Big) = - \pi \sin \Big(a - \frac{\pi}{2} \Big) = \pi \cos a$$

where I have integrated around an indented semicircle in the lower half plane.And

$$ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx = i \pi \text{Res}\Big[ \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}}, -1 \Big] + i \pi \text{Res}\Big[ \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} ,1 \Big] $$$$= \frac{i \pi}{2} \Big( e^{-i(a+ \frac{\pi}{2})} - e^{i(a+ \frac{\pi}{2})} \Big) = \pi \sin\Big(a + \frac{\pi}{2} \Big) = \pi \cos a$$

where I have integrated around an indented semicircle in the upper half plane.So if $|a| \le \frac{\pi}{2}$,

$$\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{4} \text{Re} \ (2 \pi \cos a) = \frac{\pi}{2} \cos a $$For $|a| > \frac{\pi}{2}$ the two integrals will cancel each other.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K