Integral Proofs: $|a| \le \frac{\pi}{2}$ and $|a| \le \pi$

  • Context: MHB 
  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integral Pi Proofs
Click For Summary
SUMMARY

The discussion presents integral proofs for the inequalities $|a| \le \frac{\pi}{2}$ and $|a| \le \pi$ using contour integration techniques. Specifically, it demonstrates that for $|a| \le \frac{\pi}{2}$, the integral $$\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx$$ evaluates to $$\frac{\pi}{2} \cos a$$. Similarly, for $|a| \le \pi$, the integral $$\int_{0}^{\infty} \frac{\sin (\pi x) \sin(ax)}{1-x^{2}} \ dx$$ results in $$\frac{\pi}{2} \sin a$$. The proofs leverage the properties of singularities and residues in complex analysis.

PREREQUISITES
  • Complex analysis, specifically contour integration
  • Understanding of Fourier integrals
  • Knowledge of residue theorem
  • Familiarity with singularities and their classifications
NEXT STEPS
  • Study the residue theorem in complex analysis
  • Explore the properties of Fourier integrals
  • Learn about singularities and their implications in integrals
  • Investigate advanced techniques in contour integration
USEFUL FOR

Mathematicians, physicists, and students studying complex analysis or Fourier analysis, particularly those interested in integral evaluations and contour integration techniques.

polygamma
Messages
227
Reaction score
0
Show that for $|a| \le \frac{\pi}{2}$,

$$\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{\pi}{2} \cos a$$Similarly, show that for $|a| \le \pi$,

$$ \int_{0}^{\infty} \frac{\sin (\pi x) \sin(ax)}{1-x^{2}} \ dx = \frac{\pi}{2} \sin a $$
 
Last edited:
Physics news on Phys.org
These integrals come from a section in a PDE book on the Fourier integral representation.

But I'm going to use contour integration to evaluate the first one.First notice that the singularities at $x=1$ and $x=-1$ are removable.

$$ \int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{4} \int_{-\infty}^{\infty} \frac{\cos[(a-\frac{\pi}{2})x] + \cos[(a+\frac{\pi}{2})x]}{1-x^{2}} \ dx$$

$$ = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x} + e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx = \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} \ dx + \frac{1}{4} \text{Re} \ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx $$

If $|a| < \frac{\pi}{2}$,

$$ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} \ dx = - i \pi \text{Res}\Big[ \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}}, -1 \Big] - i \pi \text{Res}\Big[ \frac{e^{i(a-\frac{\pi}{2})x}}{1-x^{2}} ,1 \Big]$$

$$ = \frac{i \pi}{2} \Big(-e^{-i(a- \frac{\pi}{2})} + e^{i(a- \frac{\pi}{2})} \Big) = - \pi \sin \Big(a - \frac{\pi}{2} \Big) = \pi \cos a$$

where I have integrated around an indented semicircle in the lower half plane.And

$$ \text{PV} \int_{-\infty}^{\infty} \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} \ dx = i \pi \text{Res}\Big[ \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}}, -1 \Big] + i \pi \text{Res}\Big[ \frac{e^{i(a+\frac{\pi}{2})x}}{1-x^{2}} ,1 \Big] $$$$= \frac{i \pi}{2} \Big( e^{-i(a+ \frac{\pi}{2})} - e^{i(a+ \frac{\pi}{2})} \Big) = \pi \sin\Big(a + \frac{\pi}{2} \Big) = \pi \cos a$$

where I have integrated around an indented semicircle in the upper half plane.So if $|a| \le \frac{\pi}{2}$,

$$\int_{0}^{\infty} \frac{\cos (\frac{\pi x}{2}) \cos(ax)}{1-x^{2}} \ dx = \frac{1}{4} \text{Re} \ (2 \pi \cos a) = \frac{\pi}{2} \cos a $$For $|a| > \frac{\pi}{2}$ the two integrals will cancel each other.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K