Integrals with bessel functions

areslagae
Messages
11
Reaction score
0
I am trying to solve

int(int(exp(a*cos(theta)*sin(phi))*sin(phi), phi = 0 .. Pi), theta = 0 .. 2*Pi) (1)

with a a constant.

Using the second last definite integral on

http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

the integral (1) reduces to

2*Pi*(int(sin(phi)*BesselI(0, a*sin(phi)), phi = 0 .. Pi)) (2)

Can anyone solve (1) or (2)?
 
Mathematics news on Phys.org
areslagae said:
I am trying to solve

int(int(exp(a*cos(theta)*sin(phi))*sin(phi), phi = 0 .. Pi), theta = 0 .. 2*Pi) (1)

with a a constant.

Using the second last definite integral on

http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

the integral (1) reduces to

2*Pi*(int(sin(phi)*BesselI(0, a*sin(phi)), phi = 0 .. Pi)) (2)

Can anyone solve (1) or (2)?


Plugging it into Mathematica assuming a>0 gives 4*Pi*Sinh[a]/a.

It doesn't tell the steps used, unfortunately :)
 
Thanks!

Apparently, Mathematica is the only program that can solve several of the integrals I am dealing without of the box. Unfortunately, I do not have access to Mathematica.

Would you please be so kind to try if Mathematica can solve

int(exp(a*cos(phi))*(sin(phi))^2, phi = 0 .. Pi)

with a a positive real constant?
 
The integral

assume(a > 0);
int(exp(a*cos(phi))*sin(phi)^2, phi = 0 .. Pi);

equals to

(Pi/a)*BesselI(1,a)

I have solved the integral using Mathematica, which seems to solve all these integrals out of the box.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top