Integrals with bessel functions

Click For Summary
The discussion focuses on solving complex integrals involving Bessel functions and exponential functions. The original integral reduces to a form involving BesselI, leading to a solution of 4*Pi*Sinh[a]/a when computed with Mathematica. Users express frustration over Mathematica's lack of step-by-step solutions and the need for access to the software. Additionally, another integral involving sin^2 and BesselI is discussed, with a solution provided as (Pi/a)*BesselI(1,a). The conversation highlights the utility of Mathematica in solving these types of integrals efficiently.
areslagae
Messages
11
Reaction score
0
I am trying to solve

int(int(exp(a*cos(theta)*sin(phi))*sin(phi), phi = 0 .. Pi), theta = 0 .. 2*Pi) (1)

with a a constant.

Using the second last definite integral on

http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

the integral (1) reduces to

2*Pi*(int(sin(phi)*BesselI(0, a*sin(phi)), phi = 0 .. Pi)) (2)

Can anyone solve (1) or (2)?
 
Mathematics news on Phys.org
areslagae said:
I am trying to solve

int(int(exp(a*cos(theta)*sin(phi))*sin(phi), phi = 0 .. Pi), theta = 0 .. 2*Pi) (1)

with a a constant.

Using the second last definite integral on

http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

the integral (1) reduces to

2*Pi*(int(sin(phi)*BesselI(0, a*sin(phi)), phi = 0 .. Pi)) (2)

Can anyone solve (1) or (2)?


Plugging it into Mathematica assuming a>0 gives 4*Pi*Sinh[a]/a.

It doesn't tell the steps used, unfortunately :)
 
Thanks!

Apparently, Mathematica is the only program that can solve several of the integrals I am dealing without of the box. Unfortunately, I do not have access to Mathematica.

Would you please be so kind to try if Mathematica can solve

int(exp(a*cos(phi))*(sin(phi))^2, phi = 0 .. Pi)

with a a positive real constant?
 
The integral

assume(a > 0);
int(exp(a*cos(phi))*sin(phi)^2, phi = 0 .. Pi);

equals to

(Pi/a)*BesselI(1,a)

I have solved the integral using Mathematica, which seems to solve all these integrals out of the box.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K