MHB Integrate Poisson Kernel: Complex Integration/Residue Theory

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
The discussion focuses on integrating the Poisson kernel using complex integration and residue theory. Participants explore alternative methods to the trigonometric substitutions suggested by Mathematica, emphasizing the use of complex variables and the unit circle. They derive expressions for the integral in terms of poles and residues, identifying which poles lie within the unit circle based on the parameter r. The conversation also touches on the simplification of the integral and the calculation of residues, ultimately leading to a conclusion about the integral's value. The integration techniques discussed highlight the interplay between complex analysis and real integrals in evaluating the Poisson kernel.
Dustinsfl
Messages
2,217
Reaction score
5
\begin{alignat}{3}
\int_{-\pi}^{\pi}\frac{1-r^2}{1-2r\cos\theta + r^2}d\theta & = & (2-2r^2)\int_{0}^{\pi}\frac{1}{1-2r\cos\theta + r^2}d\theta
\end{alignat}
We can do the above since the Poisson kernel is even. Wolfram says to make some trig subs which are easily doable but is there a way to integrate in another fashion.
We can use Complex Integration, Residue Theory, or other technique. I would never think of the substitution Wolfram gave so I would like to find a way to do this that is understandable.
 
Physics news on Phys.org
dwsmith said:
\begin{alignat}{3}
\int_{-\pi}^{\pi}\frac{1-r^2}{1-2r\cos\theta + r^2}d\theta & = & (2-2r^2)\int_{0}^{\pi}\frac{1}{1-2r\cos\theta + r^2}d\theta
\end{alignat}
We can do the above since the Poisson kernel is even. Wolfram says to make some trig subs which are easily doable but is there a way to integrate in another fashion.
We can use Complex Integration, Residue Theory, or other technique. I would never think of the substitution Wolfram gave so I would like to find a way to do this that is understandable.

Try using the substitution I suggested in...

http://www.mathhelpboards.com/f10/defeinite-integral-2038/

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Try using the substitution I suggested in...

http://www.mathhelpboards.com/f10/defeinite-integral-2038/

Kind regards

$\chi$ $\sigma$

I saw that is what Mathematica said. There isn't another way to do it?
 
dwsmith said:
I saw that is what Mathematica said. There isn't another way to do it?

Ok!... first we write the integral in the following form...

$\displaystyle J(r)= \alpha(r)\ \int_{- \pi}^{\pi} \frac{d \theta}{\cos \theta + \gamma (r)}$ (1)

... so that the problem is in some sense 'simplified' to the solution of the integral...

$\displaystyle I(r)= \int_{- \pi}^{\pi} \frac{d \theta}{\cos \theta + \gamma} $ (2)

Now we set $z=e^{i \theta}$ so that is $\displaystyle \cos \theta= \frac{e^{i \theta}+e^{-i \theta}}{2} = \frac{z+z^{-1}}{2}$ and $\displaystyle dz= i\ e^{i \theta} d \theta = i\ z\ d \theta$ and Your integral becomes... $\displaystyle I= -i \int_{C} \frac{2\ dz}{z^{2}+2\ \gamma\ z +1} = -i \int_{C} f(z)\ dz$ (3)

... where C means 'unit circle'. The poles of the function to be integrated are...

$\displaystyle p_{1}=- \gamma - \sqrt{\gamma^2 -1}\ ,\ p_{2}=- \gamma + \sqrt{\gamma^2 -1}$ (4)

... and their residues are...

$\displaystyle r_{1}= \lim_{z \rightarrow p_{1}} (z-p_{1})\ f(z)\ ,\ r_{2}= \lim_{z \rightarrow p_{2}} (z-p_{2})\ f(z)$ (5)

... and, if neither $p_{1}$ nor $p_{2}$ is on the unit circle [otherwise the integral diverges...] is... $\displaystyle I= -2\ \pi \sum_{j} r_{j}$ (6)... where the contribution is of the poles inside the unit circle...

Kind regards

$\chi$ $\sigma$
 
So $\alpha(r) = 2 - 2r^2$?

Also, what was the substitution for $1 - 2r\cos\theta + r^2 = \cos\theta + \gamma(r)$?
 
dwsmith said:
So $\alpha(r) = 2 - 2r^2$?

Also, what was the substitution for $1 - 2r\cos\theta + r^2 = \cos\theta + \gamma(r)$?

Is [without errors of me...] $\displaystyle \alpha(r)= \frac{r^{2}-1}{2\ r}$ and $\displaystyle \gamma(r)= \frac{r^{2}+1}{2\ r}$ ...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Is [without errors of me...] $\displaystyle \alpha(r)= \frac{r^{2}-1}{2\ r}$ and $\displaystyle \gamma(r)= \frac{r^{2}+1}{2\ r}$ ...

Kind regards

$\chi$ $\sigma$

$$
\frac{r^2-1}{2r}\left[\frac{1}{\cos\theta -\left(\frac{1 + r^2}{2r}\right)}\right]
$$
so shouldn't it be
$$
\frac{1}{\cos\theta - \gamma(r)}
$$
 
dwsmith said:
$$
\frac{r^2-1}{2r}\left[\frac{1}{\cos\theta -\left(\frac{1 + r^2}{2r}\right)}\right]
$$
so shouldn't it be
$$
\frac{1}{\cos\theta - \gamma(r)}
$$

Right!... is $\displaystyle \alpha(r)= \frac{r^{2}-1}{2\ r}$ and $\displaystyle \gamma(r)= -\frac{r^{2}+1}{2\ r}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
$\displaystyle p_{1}=- \gamma - \sqrt{\gamma^2 -1}\ ,\ p_{2}=- \gamma + \sqrt{\gamma^2 -1}$ (4)

How do we determine which pole is in the upper half since $\gamma$ is a function of $r$?
 
  • #10
dwsmith said:
How do we determine which pole is in the upper half since $\gamma$ is a function of $r$?

... finding for what r is $|p_{1}(r)|<1$ and $|p_{2}(r)|<1$...

Kind regards

$\chi$ $\sigma$
 
  • #11
chisigma said:
... finding for what r is $|p_{1}(r)|<1$ and $|p_{2}(r)|<1$...

Kind regards

$\chi$ $\sigma$

$$
p_1(r) = \frac{r^2 + 1}{2r}-\sqrt{\left(\frac{r^2 + 1}{2r}\right)^2-1}
$$
By the absolute value bars, you are talking about the modulus correct? If so, we have
$$
\frac{r^2 + 1}{2r}-\sqrt{\left(\frac{r^2 + 1}{2r}\right)^2-1} < 1
$$
Multiplying by the conjugate has
$$
1 < \frac{r^2 + 1}{2r}+\sqrt{\left(\frac{r^2 + 1}{2r}\right)^2-1}
$$
It just seems circular trying to solve.
 
  • #12
Let $\alpha(r) = \frac{r^2 - 1}{2r}$ and $\gamma(r) = -\left(\frac{r^2 + 1}{2r}\right)$.
$$
\frac{r^2 - 1}{2r}\left[\frac{1}{\cos\theta - \frac{1}{2r} - \frac{r^2}{2r}}\right]
$$
Then we have
\begin{alignat}{3}
\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}d\theta & = & \frac{\alpha}{2\pi}\int_{-\pi}^{\pi}\frac{1}{\cos\theta + \gamma(r)}d\theta\quad\quad\quad (1)
\end{alignat}
Let $z = e^{i\theta}$.
Then $d\theta = -iz^{-1}dz$.
Since $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$, $\cos\theta = \frac{z + z^{-1}}{2}$.
The integral in (1) becomes
$$
\frac{-i\alpha}{\pi}\int_C\frac{1}{z^2 + 2z\gamma + 1}dz
$$
where $C$ is the contour oriented counterclockwise and with simple poles at $z = -\gamma\pm\sqrt{\gamma^2 - 1}$.
The poles are simple since if we let $g(z) = z^2 + 2z\gamma + 1$, $g'(-\gamma\pm\sqrt{\gamma^2 - 1})\neq 0$ for $0\leq r < 1$.
Let $f(z) = \frac{1}{z^2 + 2z\gamma + 1}$.
Then
$$
\int_C\frac{1}{z^2 + 2z\gamma + 1}dz = 2\pi i\sum\text{Res}_{z = z_j}f(z).
$$
$z = -\gamma + \sqrt{\gamma^2 - 1}$ is the only pole in $|z| < 1$ in the upper half plane for $0\leq r < 1$.
\begin{alignat*}{3}
2\pi i\sum \text{Res}_{z = z_j}f(z) & = & 2\pi i\left[\frac{1}{z + \gamma - \sqrt{\gamma^2 - 1}}\right]\\
& = & 2\pi i\left[\frac{1}{-\gamma + \sqrt{\gamma^2 - 1} + \gamma + \sqrt{\gamma^2 - 1}}\right]\\
& = & 2\pi i\left[\frac{1}{2\sqrt{\gamma^2 - 1}}\right]\\
& = & \pi i\left[\frac{1}{\sqrt{\left(\frac{r^2 + 1}{2r}\right)^2 - 1}}\right]
\end{alignat*}

\begin{alignat}{3}
\frac{-i\alpha}{\pi}\left(\pi i\left[\frac{1}{\sqrt{\left(\frac{r^2 + 1}{2r}\right)^2 - 1}}\right]\right) & = & \frac{r^2 - 1}{2r}\left[\frac{1}{\sqrt{\left(\frac{r^2 + 1}{2r}\right)^2 - 1}}\right]\\
& = & \frac{r^2 - 1}{\sqrt{(r^2+1)^2-4r^2}}\\
& = & \frac{r^2-1}{\sqrt{(r^2-1)^2}} = 1
\end{alignat}
 
Last edited:
  • #13
I tried the other method but it isn't working out.

What went wrong?

Let $u = \tan\frac{\theta}{2}$.
Then $du = \sec^2\frac{\theta}{2}d\theta$.
Using the trig identities $\sin\theta = 2\sin\frac{\theta}{2} \cos\frac{\theta}{2}$ and $\cos\theta = \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}$, we have
$$
\sin\theta = \frac{2u}{u^2 + 1},\quad\quad\cos\theta = \frac{1 - u^2}{u^2 + 1},\quad\text{and}\quad d\theta = \frac{2du}{u^2 + 1}.
$$
We can now re-write the integral as
\begin{alignat*}{3}
\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}d\theta & = & \frac{1 - r^2}{\pi}\int_{-\pi}^{\pi}\frac{du}{(u^2 + 1)\left(1 - \frac{2r(1 - u^2)}{u^2 + 1} + r^2\right)}\\
& = & \frac{1 - r^2}{\pi}\int_{-\pi}^{\pi}\frac{du}{r^2u^2 + r^2 + 2ru^2 - 2r + u^2 + 1}\\
& = & \left.\frac{1 - r^2}{\pi}\frac{\tan^{-1}\left[\frac{(r + 1)u}{r - 1}\right]}{(r - 1)(r + 1)}\right|_{-\pi}^{\pi}\\
& = & -\left.\frac{\tan^{-1}\left[\frac{(r + 1)\tan\frac{\theta}{2}}{r - 1}\right]}{\pi}\right|_{-\pi}^{\pi}\\
& = & - \frac{\tan^{-1}\left(\infty\right)}{\pi} + \frac{\tan^{-1}\left(-\infty\right)}{\pi}\\
& = & -\frac{\pi}{2\pi} - \frac{\pi}{2\pi}\\
& = & -1
\end{alignat*}
 

Similar threads

Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
12
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K