Integrate sqrt(1-x^4)/x^5 dx Using Trig Sub | Yahoo Answers

Click For Summary
SUMMARY

The integral of sqrt(1-x^4)/x^5 dx can be computed using trigonometric substitution and integration by parts. The substitution x^2 = cos(θ) simplifies the integral to -1/2 ∫ sin²(θ)/cos³(θ) dθ. By applying integration by parts with u = sin(θ) and dv = sin(θ)/cos(θ) dθ, the integral is further reduced. The final result is I = 1/4(ln((√(1-x^4)+1)/x²) - (√(1-x^4)/x⁴)) + C.

PREREQUISITES
  • Understanding of trigonometric substitution in integrals
  • Familiarity with integration by parts technique
  • Knowledge of basic calculus concepts, including indefinite integrals
  • Ability to manipulate trigonometric identities and logarithmic functions
NEXT STEPS
  • Study advanced trigonometric substitution techniques in calculus
  • Learn about integration by parts with various functions
  • Explore the properties of logarithmic and trigonometric functions
  • Practice solving complex integrals involving square roots and rational functions
USEFUL FOR

Mathematics students, calculus learners, and anyone interested in mastering integration techniques, particularly in the context of trigonometric functions.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do I integrate sqrt(1-x^4)/x^5 dx using trig sub?

I have posted a link there to this thread so the OP can view my work.
 
Physics news on Phys.org
Hello The_Reporter,

We are given to compute the indefinite integral:

$$I=\int\frac{\sqrt{1-x^4}}{x^5}\,dx$$

Let's try the substitution:

$$x^2=\cos(\theta)\,\therefore\,dx=-\frac{\sin(\theta)}{2x}\,d\theta$$

And we obtain:

$$I=-\frac{1}{2}\int\frac{\sin^2(\theta)}{\cos^3(\theta)}\,d\theta$$

Next, let's try integration by parts where:

$$u=\sin(\theta)\,du=\cos(\theta)\,d\theta$$

$$dv=\frac{\sin(\theta)}{\cos(\theta}\,d\theta\,\therefore\,v=\frac{1}{2\cos^2(\theta)}$$

And now we obtain:

$$I=-\frac{1}{4}\left(\frac{\sin(\theta)}{\cos^2(\theta)}-\int\sec(\theta)\,d\theta\right)$$

For the remaining integral, consider:

$$\sec(\theta)=\frac{\sec(\theta)\left(\sec(\theta)+\tan(\theta)\right)}{\sec(\theta)+\tan(\theta)}=\frac{d}{d\theta}\left(\ln\left|\sec(\theta)+\tan(\theta)\right|\right)$$

Hence, we obtain:

$$I=-\frac{1}{4}\left(\frac{\sin(\theta)}{\cos^2(\theta)}-\ln\left|\sec(\theta)+\tan(\theta)\right|\right)+C$$

From our original substitution, we find that:

$$\tan(\theta)=\frac{\sqrt{1-x^4}}{x^2}$$

$$\sec(\theta)=\frac{1}{x^2}$$

And so, we finally find:

$$\bbox[5px,border:2px solid #207498]{I=\frac{1}{4}\left(\ln\left(\frac{\sqrt{1-x^4}+1}{x^2} \right)-\frac{\sqrt{1-x^4}}{x^4} \right)+C}$$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K