Integrating dx / (4+x^2)^2 using Trigonometric Substitution

Click For Summary
SUMMARY

The integral of dx / (4+x^2)^2 can be evaluated using trigonometric substitution, specifically with the substitution x = 2 tan(θ). The solution involves transforming the integral into a simpler form, leading to the expression 1/16 [tan^-1(x/2) + sin(2 tan^-1(x/2))/2] + C. The final answer matches the format provided in the textbook, confirming the correctness of the approach. The discussion emphasizes the importance of back substitution and simplification in solving integrals involving trigonometric identities.

PREREQUISITES
  • Understanding of trigonometric substitution in calculus
  • Familiarity with the integral calculus of rational functions
  • Knowledge of trigonometric identities, particularly the double angle formulas
  • Ability to perform back substitution in integrals
NEXT STEPS
  • Study the method of trigonometric substitution in integral calculus
  • Learn about the double angle formulas for sine and cosine
  • Practice evaluating integrals involving rational functions and trigonometric identities
  • Explore advanced techniques in integration, such as integration by parts and partial fractions
USEFUL FOR

Students studying calculus, particularly those focusing on integration techniques, as well as educators looking for examples of trigonometric substitution in action.

Oribe Yasuna
Messages
43
Reaction score
1

Homework Statement


Evaluate the integral:
integral of dx / (4+x^2)^2

Homework Equations


x = a tan x theta
a^2 + x^2 = a^2 sec^2 theta

The Attempt at a Solution


x = 2 tan theta
dx = 2sec^2 theta
tan theta = x/2

integral of dx / (4+x^2)^2
= 1/8 integral (sec^2 theta / sec^4 theta) d theta
= 1/8 integral (cos^2 theta) dtheta
= 1/16 integral 1 + cos 2 theta d theta
= 1/16 [ theta + sin 2 theta / 2 ] + c
= 1/16 [ theta + sin theta cos theta ] + c
= 1/16 [ tan ^-1 x/2 + ? ] + c

"?" is where I get lost.
Did I do the problem wrong? I was really confused when the book gave me a problem without a square root.
 
Physics news on Phys.org
Oribe Yasuna said:

Homework Statement


Evaluate the integral:
integral of dx / (4+x^2)^2

Homework Equations


x = a tan x theta
a^2 + x^2 = a^2 sec^2 theta

The Attempt at a Solution


x = 2 tan theta
dx = 2sec^2 theta
tan theta = x/2

integral of dx / (4+x^2)^2
= 1/8 integral (sec^2 theta / sec^4 theta) d theta
= 1/8 integral (cos^2 theta) dtheta
= 1/16 integral 1 + cos 2 theta d theta
= 1/16 [ theta + sin 2 theta / 2 ] + c
= 1/16 [ theta + sin theta cos theta ] + c
= 1/16 [ tan ^-1 x/2 + ? ] + c

"?" is where I get lost.
Did I do the problem wrong? I was really confused when the book gave me a problem without a square root.

Your sub looks fine, and your work up to $$=\frac{\theta}{16}+\frac{sin(2\theta)}{32}+C$$

Go ahead and make your last back sub.
 
a^2 + x^2 = a^2 sec^2 theta
x^2 + 4 = 4 sec^2 theta
sqrt (x^2 + 4) / 2 = sec theta
cos sqrt (x^2 + 4) / 2 = theta

Is this what you mean by back sub?
 
Oribe Yasuna said:
a^2 + x^2 = a^2 sec^2 theta
x^2 + 4 = 4 sec^2 theta
sqrt (x^2 + 4) / 2 = sec theta
cos sqrt (x^2 + 4) / 2 = theta

Is this what you mean by back sub?

You have ##\theta = tan^{-1}(\frac{x}{2})## above, just plug in for theta and simplify.
 
So,

= [ θ/16 + sin (2θ)/32 ] + C
= [ tan^-1 (x/2) / 16 + sin (2 tan^-1 (x/2) / 32 ] + C

Is it okay to plug in tan^-1 (x/2) for θ in sin (2θ) or am I misinterpreting you?
It seems weird.
 
Oribe Yasuna said:
So,

= [ θ/16 + sin (2θ)/32 ] + C
= [ tan^-1 (x/2) / 16 + sin (2 tan^-1 (x/2) / 32 ] + C

Is it okay to plug in tan^-1 (x/2) for θ in sin (2θ) or am I misinterpreting you?
It seems weird.

It's perfectly fine, that's what you needed to do. You had already found above that ##tan(\theta)=\frac{x}{2}##, you could simplify the sin by redoing the double angle formula ##sin(2tan^{-1}(\frac{x}{2}))=2(sin(tan^{-1}(\frac{x}{2}))(cos(tan^{-1}(\frac{x}{2}))## and simplify from your right triangle picture.

Why does it seem weird?
 
= [ tan^-1 (x/2) / 16 + (sin(4/x) cos(4/x))/16 ]

Does it simplify to that?

It seems weird because I don't think I've done it before and the answer in the back of the book is in a different format:
(tan^-1 (x/2) )/ 16 + x/(8(4 + x^2)

Sorry for the messy and inconsistent typing, and thanks for the help.
 
Oribe Yasuna said:
= [ tan^-1 (x/2) / 16 + (sin(4/x) cos(4/x))/16 ]

Does it simplify to that?

It seems weird because I don't think I've done it before and the answer in the back of the book is in a different format:
(tan^-1 (x/2) )/ 16 + x/(8(4 + x^2)

Sorry for the messy and inconsistent typing, and thanks for the help.
No problem, so you havehttps://physicsforums-bernhardtmediall.netdna-ssl.com/data/attachments/73/73867-db7eccc9bcdd5e7324f0dfba67853800.jpg
$$ = \frac{1}{16}(tan^{-1}(\frac{x}{2})+(sin(tan^{-1}(\frac{x}{2}))(cos(tan^{-1}(\frac{x}{2})))$$

Since $$ \theta=tan^{-1}(\frac{x}{2})$$
$$cos(tan^{-1}(\frac{x}{2}))=\frac{2}{\sqrt{x^2+4)}}$$

Do the same for sin, simplify, and you should get the book answer.
 
Last edited by a moderator:
I did it! Looks exactly like the book's.

Thanks again.
 
  • #10
Oribe Yasuna said:
I did it! Looks exactly like the book's.

Thanks again.

Anytime, you did all the calculations and setting up correctly, I think the end just through you off.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
28
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K