Line Integral of circle in counterclockwise direction

In summary, the line integral of a circle in a counterclockwise direction involves calculating the integral of a vector field along the path of the circle, typically parameterized using trigonometric functions. This process evaluates the work done by the field around the circular path and is influenced by the direction of traversal. The result can be determined using Green's theorem if the field is suitable, connecting the line integral to a double integral over the area enclosed by the circle.
  • #1
songoku
2,426
363
Homework Statement
Please see below
Relevant Equations
Line Integral
Parametric
1701323428594.png


My attempt:
Let ##x=a \cos \theta## and ##y=a \sin \theta##

$$\int_{L} xy^2 dx-x^2ydy$$
$$=\int_{0}^{2\pi} \left( (a\cos \theta)(a\sin \theta)^2 (-a\sin \theta)-(a\cos \theta)^2 (a \sin \theta)(a\cos \theta)\right) d\theta$$
$$=-a^4 \int_{0}^{2\pi}\left( \sin^3 \theta \cos \theta+\cos^3 \theta \sin \theta \right) d\theta$$

I get zero as the result of the integration. Is it possible? Thanks
 
Physics news on Phys.org
  • #2
Yes, the integral is zero by symmetry.
 
  • Like
Likes songoku
  • #3
Orodruin said:
Yes, the integral is zero by symmetry.
To qualify this:

Take the first term and consider the integral along the lower half-circle. You obtain ##y^2 = a^2 - x^2## and can parametrize it by ##-a < x < a##. The integral along the lower half-circle is therefore
$$
\int_{-a}^a y^2 x \, dx = \int_{-a}^a (a^2 - x^2) x \, dx
$$
which is an integral of an odd function over an even interval and therefore zero. A similar argument applies to the upper half-circle and for the integral of the other term.

Alternatively, you can use Green's formula and conclude that
$$
\oint_\Gamma \left(y^2 x \, dx - x^2 y \, dy\right)
= \int_{S} \left(-\frac{\partial(x^2 y)}{\partial x} - \frac{\partial(y^2 x)}{\partial y}\right) dx\, dy
= - 4 \int_{S} xy \, dx\, dy,
$$
where ##S## is the disc enclosed by the circle. This integral is obviously zero since the integrand is odd in both ##x## and ##y## whereas ##S## is symmetric with respect to ##x \to -x## as well as ##y \to -y##.
 
  • Like
Likes songoku
  • #4
Thank you very much for the help and explanation Orodruin
 
  • #5
FYI, there is a very large class of functions that will give zero integrals on closed curves. They are related to potentials and to analytic functions with no enclosed singularities.
 
  • Like
Likes WWGD and songoku
  • #6
FactChecker said:
FYI, there is a very large class of functions that will give zero integrals on closed curves. They are related to potentials and to analytic functions with no enclosed singularities.
Should be pointed out that this is not the case here though. The zero really comes from symmetry. This may be seen from the fact that the integrand of the area integral in Green’s formula above is not zero so there will exist areas such that the integral around them are non-zero.

(Yes, I tried that first before arguing symmetry 😉)
 
  • Like
Likes songoku and FactChecker
Back
Top