MHB Integrating exponential functions

Click For Summary
The integral of the function x(5^{-x^2})dx is expressed as -\frac{1}{2} \int 5^{-x^{2}}(-2x)dx, and the factor of \frac{1}{2} arises from the integration by parts method. The transformation 5^{-x^2} is rewritten using the exponential function as e^{-x^2 \ln(5)}. The derivative of e^{-x^2 \ln(5)} is calculated to be -2x \ln(5) e^{-x^2 \ln(5)}, leading to the integration result. Ultimately, the integral evaluates to -\frac{5^{-x^2}}{2 \ln(5)} + C.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int x (5^{-x^2})dx= -\frac{1}{2} \int 5^{-x^{2}}(-2x)dx$

how is $\frac{1}{2}$ in front of the $\int$ derived
 
Last edited:
Physics news on Phys.org
dx is missing !
5-x²=exp(-x²ln(5))
x²=t
x dx = dt/2
 
sorry i hit the save instead of preview thot I cud fix it before reply
 
I've done that before, and it is annoying! (Headbang)
 
karush said:
$\int x (5^{-x^2})dx= -\frac{1}{2} \int 5^{-x^{2}}(-2x)dx$

how is $\frac{1}{2}$ in front of the $\int$ derived

\[\int x (5^{-x^2})dx= \int x e^{-x^2\ln(5)}dx\]

Now: \[\frac{d}{dx} e^{-x^2\ln(5)}=-2x\ln(5) e^{-x^2\ln(5)}\] so:

\[\begin{aligned}\int x (5^{-x^2})dx &=-\frac{1}{2\ln(5)}\int \frac{d}{dx} e^{-x^2\ln(5)} dx\\
&=-\frac{e^{-x^2\ln(5)}}{2\ln(5)}+ C \\ &=-\;\frac{5^{-x^2}}{2\ln(5)}+C \end{aligned} \]

CB
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K