MHB Integrating exponential functions

Click For Summary
The integral of the function x(5^{-x^2})dx is expressed as -\frac{1}{2} \int 5^{-x^{2}}(-2x)dx, and the factor of \frac{1}{2} arises from the integration by parts method. The transformation 5^{-x^2} is rewritten using the exponential function as e^{-x^2 \ln(5)}. The derivative of e^{-x^2 \ln(5)} is calculated to be -2x \ln(5) e^{-x^2 \ln(5)}, leading to the integration result. Ultimately, the integral evaluates to -\frac{5^{-x^2}}{2 \ln(5)} + C.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int x (5^{-x^2})dx= -\frac{1}{2} \int 5^{-x^{2}}(-2x)dx$

how is $\frac{1}{2}$ in front of the $\int$ derived
 
Last edited:
Physics news on Phys.org
dx is missing !
5-x²=exp(-x²ln(5))
x²=t
x dx = dt/2
 
sorry i hit the save instead of preview thot I cud fix it before reply
 
I've done that before, and it is annoying! (Headbang)
 
karush said:
$\int x (5^{-x^2})dx= -\frac{1}{2} \int 5^{-x^{2}}(-2x)dx$

how is $\frac{1}{2}$ in front of the $\int$ derived

\[\int x (5^{-x^2})dx= \int x e^{-x^2\ln(5)}dx\]

Now: \[\frac{d}{dx} e^{-x^2\ln(5)}=-2x\ln(5) e^{-x^2\ln(5)}\] so:

\[\begin{aligned}\int x (5^{-x^2})dx &=-\frac{1}{2\ln(5)}\int \frac{d}{dx} e^{-x^2\ln(5)} dx\\
&=-\frac{e^{-x^2\ln(5)}}{2\ln(5)}+ C \\ &=-\;\frac{5^{-x^2}}{2\ln(5)}+C \end{aligned} \]

CB
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K