Integrating $\frac{1}{(a+b\sin x)^2}dx$: Step-by-Step Guide

Click For Summary

Discussion Overview

The discussion revolves around the integral $\displaystyle \int\frac{1}{(a+b\sin x)^2}dx$, specifically focusing on methods of integration and potential substitutions. Participants explore various approaches, including integration by parts and trigonometric substitutions, while seeking simpler methods for calculation.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant presents an integration by parts approach but expresses uncertainty about calculating a subsequent integral.
  • Another participant suggests a substitution method using $t = \tan \frac{x}{2}$, providing the corresponding transformations for $dx$ and $\sin x$.
  • A later reply acknowledges the hint but finds the proposed method complex, asking for alternative approaches.
  • Another participant cites a specific formula from a mathematical handbook, providing a potential solution while noting the condition $a^{2} \ne b^{2}$.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for solving the integral, with multiple approaches and expressions of uncertainty remaining evident throughout the discussion.

Contextual Notes

Some participants express challenges with the complexity of certain methods, indicating that the discussion may be limited by the participants' familiarity with advanced integration techniques.

juantheron
Messages
243
Reaction score
1
$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx$, where $a>b$

My Trial :: Using Integration by parts::

$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx = \frac{1}{b}\int -\csc (x)\cdot \frac{-b\sin x}{(a+b\sin x)^2}dx$

$\displaystyle -\frac{1}{b}\cdot \csc (x)\cdot \frac{-1}{(a+b\sin x)}+\int (-\csc x \cdot \cot x)\cdot \frac{-1}{(a+b\sin x)}dx$

Now How Can I Calculate (II) Integral

Help me

Thanks
 
Physics news on Phys.org
jacks said:
$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx$, where $a>b$

My Trial :: Using Integration by parts::

$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx = \frac{1}{b}\int -\csc (x)\cdot \frac{-b\sin x}{(a+b\sin x)^2}dx$

$\displaystyle -\frac{1}{b}\cdot \csc (x)\cdot \frac{-1}{(a+b\sin x)}+\int (-\csc x \cdot \cot x)\cdot \frac{-1}{(a+b\sin x)}dx$

Now How Can I Calculate (II) Integral

Help me

Thanks

For integrals of this type the following substitution is often useful...

$\displaystyle t = \tan \frac{x}{2}$

$\displaystyle dx = \frac{2}{1+ t^{2}}\ d t$

$\displaystyle \sin x = \frac{2\ t}{1 + t^{2}}$

$\displaystyle \cos x = \frac{1 - t^{2}}{1 + t^{2}}$

Kind regards

$\chi$ $\sigma$
 
Thanks chisigma for giving me a hint.

But Using this method, calculation of integral is very complex .

Can anyone have a better method.

If yes the please explain here

Thanks
 
jacks said:
$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx$, where $a>b$

My Trial :: Using Integration by parts::

$\displaystyle \int\frac{1}{(a+b\sin x)^2}dx = \frac{1}{b}\int -\csc (x)\cdot \frac{-b\sin x}{(a+b\sin x)^2}dx$

$\displaystyle -\frac{1}{b}\cdot \csc (x)\cdot \frac{-1}{(a+b\sin x)}+\int (-\csc x \cdot \cot x)\cdot \frac{-1}{(a+b\sin x)}dx$

Now How Can I Calculate (II) Integral

Help me

Thanks

In the Italian translation of M.H. Spiegel Mathematic Handbook on page 76 is written...

$\displaystyle \int \frac{d x}{(a + b\ \sin x)^{2}} = \frac{b\ \cos x}{a\ (a^{2} - b^{2})\ (a + b\ \sin x)} + \frac{2\ b}{(a^{2}-b^{2})^{\frac{3}{2}}}\ \tan^{-1} \frac{a\ \tan \frac{x}{2} + b}{\sqrt{a^{2}- b^{2}}} + c\ (1)$

... where [of course...] $a^{2} \ne b^{2}$...

Kind regards

$\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K