MHB Integrating $\sec^2(2x)$: A Puzzler

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integrating
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\begin{align*}\displaystyle
I_{7}&=\int_{0}^{\pi/8}\frac{\sec^2(2x)}{2+\tan\left({2x}\right)} \\
&=
\end{align*}
not sure of the u substitution here... if $u=tan(2x)$ then $du=2sec^2(2x)$ but stuck with 2 in the denominator after subst
 
Physics news on Phys.org
What's the derivative of 2?
 
So maybe the substitution $\displaystyle \begin{align*} u = 2 + \tan{(2\,x)} \end{align*}$ might be more appropriate...
 
$u=2+\tan(2x) \therefore du = 2 \sec^2(2x) \, dx$
so then
$\displaystyle I= 2\int_{2}^{3} \frac{1}{u}\,du=
\frac{1}{2}\left[ln(u)\right]_2^3$
so then
$I=\frac{1}{2}\ln\left({\frac{3}{2}}\right)$
hopefully
 
Last edited:
$$I=\color{red}\frac12\color{black}\int_2^3\frac1u\,\text{ d}u=\left[\frac12\log(u)\right]_2^3$$

Otherwise ok.
 

Similar threads

Replies
2
Views
847
Replies
1
Views
1K
Replies
6
Views
2K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
9
Views
2K
Replies
4
Views
2K
Back
Top