MHB Integrating $\sec^2(2x)$: A Puzzler

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integrating
Click For Summary
The integral I is expressed as I = ∫(sec²(2x)/(2 + tan(2x))) dx from 0 to π/8. The discussion revolves around finding an appropriate substitution, with the initial attempt using u = tan(2x) leading to complications with the denominator. A more suitable substitution proposed is u = 2 + tan(2x), which simplifies the integral. This results in I being calculated as 2∫(1/u) du from 2 to 3, yielding I = (1/2)ln(3/2). The final expression for the integral is confirmed as I = (1/2)ln(3/2).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\begin{align*}\displaystyle
I_{7}&=\int_{0}^{\pi/8}\frac{\sec^2(2x)}{2+\tan\left({2x}\right)} \\
&=
\end{align*}
not sure of the u substitution here... if $u=tan(2x)$ then $du=2sec^2(2x)$ but stuck with 2 in the denominator after subst
 
Physics news on Phys.org
What's the derivative of 2?
 
So maybe the substitution $\displaystyle \begin{align*} u = 2 + \tan{(2\,x)} \end{align*}$ might be more appropriate...
 
$u=2+\tan(2x) \therefore du = 2 \sec^2(2x) \, dx$
so then
$\displaystyle I= 2\int_{2}^{3} \frac{1}{u}\,du=
\frac{1}{2}\left[ln(u)\right]_2^3$
so then
$I=\frac{1}{2}\ln\left({\frac{3}{2}}\right)$
hopefully
 
Last edited:
$$I=\color{red}\frac12\color{black}\int_2^3\frac1u\,\text{ d}u=\left[\frac12\log(u)\right]_2^3$$

Otherwise ok.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
895
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K