I Integration of Bessel function products (J_1(x)^2/xdx)

euphoricrhino
Messages
22
Reaction score
7
Hello,
While reading Sakurai (scattering theory/Eikonal approximation section), I encountered a referenced integral
##
\int_0^\infty J_1(x)^2\frac{dx}{x}=1/2
##

I also see this integral from a few places (wolfram, DLMF, etc), so I tried to prove this from various angles (recurrence relations, series representation of J_n, etc) but have not succeeded.

Can anyone provide a sketch of the proof?
Thanks!
 
Physics news on Phys.org
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top