Integration of ##e^{-x^2}## with respect to ##x##

Click For Summary

Discussion Overview

The discussion revolves around the integration of the function ##e^{-x^2}## with respect to ##x##, particularly focusing on the transformation of area elements from Cartesian to polar coordinates and the properties of the error function (erf). Participants explore various mathematical approaches, historical context, and the implications of using different coordinate systems.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Historical

Main Points Raised

  • One participant references a Math Stack Exchange link to discuss the transformation of area elements and expresses confusion about the use of partial derivatives in the context of polar coordinates.
  • Another participant points out a perceived mistake in a formula related to the area element transformation, suggesting that the variable ##r## was omitted in a specific equation.
  • Participants discuss the Jacobian matrix derived from the transformation equations ##x = r \cos(\theta)## and ##y = r \sin(\theta)##, noting that the determinant provides the scaling factor for area elements when converting from Cartesian to polar coordinates.
  • There is a question about the historical reasoning behind the acronym "erf" for the error function, with one participant suggesting it is simply shorthand for "error function."
  • One participant emphasizes the need for a wedge-shaped differential in polar integrals, contrasting it with the preservation of a square differential in Cartesian coordinates.

Areas of Agreement / Disagreement

Participants express various viewpoints regarding the transformation of area elements and the properties of the error function. There is no clear consensus on the best approach to the integration of ##e^{-x^2}## or the historical context of the error function acronym.

Contextual Notes

Participants discuss the limitations of their approaches, including the dependence on specific definitions and the challenges of integrating functions with limits beyond plus or minus infinity.

chwala
Gold Member
Messages
2,828
Reaction score
425
TL;DR
I have just been looking at the integration of ##e^{-x^2}##.
My first point of reference is:

https://math.stackexchange.com/questions/154968/is-there-really-no-way-to-integrate-e-x2

I have really taken time to understand how they arrived at ##dx dy=dA=r dθ dr## wow! I had earlier on gone round circles! ...i now get it that one is supposed to use partial derivatives

I managed to follow through the link here
https://math.stackexchange.com/questions/1636021/rigorous-proof-that-dx-dy-r-dr-d-theta

...but there is a slight mistake here: i.e on the line of

##dx dy = (\sin θ dr)(-r \sin θ dθ)-(\cos θ dr)( \cos θ dθ)##

##r## is missing!

It ought to be:

##dx dy = (\sin θ dr)(-r \sin θ dθ)-(\cos θ dr)(r \cos θ dθ)##.

In my approach i would have used the following lines,

Let ##x = r \cos θ## and ##y = r \sin θ##

and ##X=rθ## Where ##X## is a function of two variables, ##r## and ##θ##.

then,

##dx=x_r dr +x_θ dθ##

##dx=\cos θ dr -r \sin θ dθ ##

##dy=y_r dr +y_θ dθ##

##dy=\sin θ dr +r \cos θ dθ##

##dx dy = (\cos θ dr)(r \cos θ dθ)-(-r \sin θ dθ)(\sin θ dr)##

##dx dy = (\cos θ dr)(r \cos θ dθ)+(r \sin θ dθ)(\sin θ dr)##
...

Is there another way of looking at ##dA=dxdy##? Any insight guys...

My other question would be on the so called error function erf realised after integrating ##e^{-x^2}##. Any concrete reason as to why Mathematicians settled with the acronym erf? I understand that there are no trig/exponential substitutions that may be applicable on any other limits other than plus or minus infinity...cheers.
 
Last edited:
Physics news on Phys.org
chwala said:
Is there another way of looking at
##dA=dxdy##? Any insight guys...
From ##x = r \cos(\theta)## and ##y = r\sin(\theta)##, the partials are

##\frac{\partial x}{\partial r} = \cos(\theta)## ##\frac{\partial y}{\partial r} = \sin(\theta)##
##\frac{\partial x}{\partial \theta} = -r\sin(\theta)## ##\frac{\partial y}{\partial \theta} = r\cos(\theta) ##
These partial derivatives make up the elements of a Jacobian matrix, whose determinant gives you the scaling factor in transforming from an area element in rectangular coordinates (dx dy) to one in terms of polar coordinates (##dr~d\theta##). In this case, the determinant is ##r(\cos^2(\theta) + \sin^2(\theta) = r##, so an area element ##dx dy = rdr~d\theta##.

Graphically, the (crude) image I drew below shows the area of a typical area element in polar coordinates. The shaded area is roughly the shape of a rectangle with two curved sides. The width of this shape is ##\Delta r \approx dr## and the arc length of the inner curved side is ##r\Delta \theta) \approx r d\theta)##. If ##\Delta r## and ##\Delta \theta## are "small" there is not much difference in arc length between the outer curve and inner curve, and the shaded figure's area is approximately ##r \Delta r \Delta \theta \approx r dr d\theta##.
pizza.png


chwala said:
My other question would be on the so called error function erf realised after integrating ##e^{-x^2}##. Any concrete reason as to why Mathematicians settled with the acronym erf?
As far as I know it's just shorthand for error function.
 
  • Informative
Likes   Reactions: chwala
...interesting how they came up with
Mark44 said:
From ##x = r \cos(\theta)## and ##y = r\sin(\theta)##, the partials are

##\frac{\partial x}{\partial r} = \cos(\theta)## ##\frac{\partial y}{\partial r} = \sin(\theta)##
##\frac{\partial x}{\partial \theta} = -r\sin(\theta)## ##\frac{\partial y}{\partial \theta} = r\cos(\theta) ##
These partial derivatives make up the elements of a Jacobian matrix, whose determinant gives you the scaling factor in transforming from an area element in rectangular coordinates (dx dy) to one in terms of polar coordinates (##dr~d\theta##). In this case, the determinant is ##r(\cos^2(\theta) + \sin^2(\theta) = r##, so an area element ##dx dy = rdr~d\theta##.

Graphically, the (crude) image I drew below shows the area of a typical area element in polar coordinates. The shaded area is roughly the shape of a rectangle with two curved sides. The width of this shape is ##\Delta r \approx dr## and the arc length of the inner curved side is ##r\Delta \theta) \approx r d\theta)##. If ##\Delta r## and ##\Delta \theta## are "small" there is not much difference in arc length between the outer curve and inner curve, and the shaded figure's area is approximately ##r \Delta r \Delta \theta \approx r dr d\theta##.
View attachment 329338

As far as I know it's just shorthand for error function.
Thanks @Mark44
 
  • Like
Likes   Reactions: jedishrfu
I think the jacobian was to convert the small differential segment from a small dxdy square in cartesian coordinates to a wedge shape as shown in Mark's drawing.

If you use the technique you used you will have preserved the dxdy square as a dxdy square but the polar integral needs a wedge shape differential.
 
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K