okay, there are two curves: curve1: y=a^x and curve2: b^x. what is the angle between them at their point of intersection. given that (a≠b). My general method: if i wanted angle b/w the curves y=x^2 and y=(x-2)^2, i would easily do it. let A be angle b/w them, then, tanA= [tan(m1)-tan(m2)]/1-tanm1.tanm2 can be used at their point of intersection.this is what my textbook says. but the problem with a^x and b^x is that I CANNOT FIND THE POINT OF INTERSECTION. which brings me to the very basic question, how can we find pt of intersection of curves like this?
a small addendum, what i actually mean by angle b/w curves is the angle b/w their tangents at that point.
beacuse, at the same x point, a and b has to be equal to get you to the same y value as the equation suggests
oh wait, i got it, x mustt be zero, so that for diff values of a and b, they get you the same y value. i got it now.