Interference of light in thin films

Click For Summary
SUMMARY

The discussion centers on calculating the thickness of a thin oil film (n=1.5) in air, specifically addressing the phase difference equations for light interference. The relevant equations include the phase difference formula, which is given by φ = (2π/λ) * Δ + π, and the conditions for maximum and minimum phase differences at wavelengths of 600nm and 300nm, respectively. The calculated film thickness is determined to be 100nm, correcting an initial erroneous result of -100nm by properly accounting for the phase change due to reflection and refraction.

PREREQUISITES
  • Understanding of light interference principles
  • Familiarity with phase difference calculations
  • Knowledge of thin film optics
  • Basic proficiency in LaTeX for mathematical expressions
NEXT STEPS
  • Study the principles of thin film interference in detail
  • Learn about the impact of refractive index on phase changes
  • Explore the use of spectrometers for measuring light wavelengths
  • Investigate the derivation of phase difference equations in optics
USEFUL FOR

Students studying optics, physicists interested in wave phenomena, and anyone involved in experiments with thin films and light interference patterns.

jerry222
Messages
5
Reaction score
1
Homework Statement
Suppose we have a thin oil film (n=1.5) in air. The light strikes the film vertically. We use a spectrometer to see that an intensity maximum at wavelength of 600nm and a minimum at 300nm. And there is no minima inbetween. How thick is the film?
Relevant Equations
\delta=(2pi/lamda)
Phase difference is $\phi=\frac{2pi}{\lambda}* \Delta+\pi$

Phase difference, max: $\Delta \phi=2pim=\frac{2pi}{\lamda_{max}}*2nd$

Phase difference, max: $\Delta \phi=2pim=\frac{2pi}{\lamda_{min}}*2nd+pi$

Flim thickness: $d=100nm$

Set the equations equal to each other i got a d=-100nm which is strange. Can someone help?
 
Physics news on Phys.org
jerry222 said:
Homework Statement:: Suppose we have a thin oil film (n=1.5) in air. The light strikes the film vertically. We use a spectrometer to see that an intensity maximum at wavelength of 600nm and a minimum at 300nm. And there is no minima inbetween. How thick is the film?
Relevant Equations:: ##\delta=(2\pi/\lambda)##

Phase difference is ##\phi=\frac{2pi}{\lambda}* \Delta+\pi##
Phase difference, max: ##\Delta \phi=2pim=\frac{2pi}{\lamda_{max}}*2nd##
Phase difference, max: ##\Delta \phi=2pim=\frac{2pi}{\lamda_{min}}*2nd+pi##
Flim thickness: ##d=100nm##

Set the equations equal to each other i got a d=-100nm which is strange. Can someone help?
I tried fixing up your LaTeX but it still isn’t making much sense:
Phase difference is ##\phi=\frac{2\pi}{\lambda}* \Delta+\pi##
Phase difference, max: ##\Delta \phi=2\pi m=\frac{2\pi}{\lambda_{max}}*2nd##
Phase difference, max: ##\Delta \phi=2\pi m=\frac{2\pi}{\lambda_{min}}*2nd+\pi##
Flim thickness: ##d=100nm##

Don't you mean Phase difference is ##\pi##?
Anyway, a difference is unsigned, so in the equation it's ##\pm\pi##.
 
haruspex said:
I tried fixing up your LaTeX but it still isn’t making much sense:
Phase difference is ##\phi=\frac{2\pi}{\lambda}* \Delta+\pi##
Phase difference, max: ##\Delta \phi=2\pi m=\frac{2\pi}{\lambda_{max}}*2nd##
Phase difference, max: ##\Delta \phi=2\pi m=\frac{2\pi}{\lambda_{min}}*2nd+\pi##
Flim thickness: ##d=100nm##

Don't you mean Phase difference is ##\pi##?
Anyway, a difference is unsigned, so in the equation it's ##\pm\pi##.
yeah where pi is the phase change due to refraction and reflection
 
jerry222 said:
yeah where pi is the phase change due to refraction and reflection
So which sign should you select?
 
haruspex said:
So which sign should you select?
ah i got -100nm, the correct answer is 100...i just set those two eaquations equal to each other, that s what i wanted to ask...
 
jerry222 said:
ah i got -100nm, the correct answer is 100...i just set those two eaquations equal to each other, that s what i wanted to ask...
I think you are not getting the point I am making.
if the difference is ##\pi##, your equation should be ##\Delta \phi=2\pi m=\frac{2\pi}{\lambda_{min}}*2nd\pm\pi##. I.e., you do not at this stage know which way the difference is.
So your answer becomes ##\pm 100nm##, and you have to choose the sign that makes sense.
 
  • Like
Likes   Reactions: Delta2 and jerry222
ahhhhhhhhh Thank You !
 
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 35 ·
2
Replies
35
Views
3K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
909
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
836
  • · Replies 3 ·
Replies
3
Views
4K