B Interferometry: Photons Needed for Interference Pattern

Bob8102
Messages
3
Reaction score
2
TL;DR Summary
Number of photons needed to create interference pattern.
If you have, say, a two-mirror interferometer that is producing an interference pattern, how many photons are interfering? Two, or just one?
 
Physics news on Phys.org
Just one.
 
You need a lot of photons to see an interference pattern, but you only need one in the apparatus at any time. Each one gives you a dot on your screen - then you wait until enough dots appear for you to see the pattern.
 
  • Like
Likes vanhees71 and Demystifier
Bob8102 said:
If you have, say, a two-mirror interferometer that is producing an interference pattern, how many photons are interfering? Two, or just one?
Only one at a time is needed. The same is true of, say, electrons in the double slit experiment. The current through the slits can be reduced so low that only one electron at a time is passing through the slits. An interference pattern will still be produced, though you still need to accumulate many electrons at the detector over time to build up the observed pattern. After all, a single particle cannot make a pattern.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top