Interpreting the energy density of QFT vacuum states

Click For Summary
SUMMARY

The discussion centers on the interpretation of vacuum energy density in Quantum Field Theory (QFT) as presented in Peskin and Schroeder's text. Specifically, Equation (4.56) defines vacuum energy density as $$ \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)} $$, with the zero of energy established by the condition ##H_0|0\rangle = 0##. The delta function in the denominator does not imply the right side is negligible; rather, it requires careful interpretation in a distributional sense. The derivation from Equation (4.55) involves applying combinatorial results related to moment generating functions.

PREREQUISITES
  • Understanding of Quantum Field Theory (QFT) principles
  • Familiarity with Peskin and Schroeder's QFT text, particularly Equations (4.55) and (4.56)
  • Knowledge of delta functions and their properties in mathematical physics
  • Combinatorial mathematics related to generating functions
NEXT STEPS
  • Study the derivation of vacuum energy density in QFT from first principles
  • Learn about the properties and applications of delta functions in quantum mechanics
  • Explore combinatorial techniques in generating functions and their relevance to QFT
  • Investigate perturbation theory in QFT and its implications for vacuum states
USEFUL FOR

This discussion is beneficial for theoretical physicists, graduate students in quantum mechanics, and researchers focusing on Quantum Field Theory and vacuum state properties.

math-physicist
Messages
5
Reaction score
0
I am reading Peskin-Schroeder's QFT text, and there on pg. 98 Equation (4.56) they derive the expression for the vacuum energy density (relative to the zero of energy set by ##H_0|0\rangle = 0##):
$$ \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
My questions are:
  • What do they mean by "relative to the zero of energy set by ##H_0|0\rangle = 0##" ?
  • The right side of the above expression has a delta function evaluated at 0. Doesn't that imply that the right side is essentially negligible/zero? Then how does one interpret this equation? The vacuum has zero energy?
  • How does one derive Equation (4.56) starting from Equation (4.55) which states:
    $$ e^{\sum V_i}\propto e^{-2iE_0T}\ ? $$
 
Last edited:
Physics news on Phys.org
math-physicist said:
I am reading Peskin-Schroeder's QFT text, and there on pg. 98 Equation (4.56) they derive the expression for the vacuum energy density (relative to the zero of energy set by ##H_0|0\rangle = 0##):
$$ \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
My questions are:
  • What do they mean by "relative to the zero of energy set by ##H_0|0\rangle = 0##" ?
A Hamiltonian is defined only up to a constant energy shift. The condition fixes this constant by requiring that that the ground state (vacuum) has energy zero.
math-physicist said:
  • The right side of the above expression has a delta function evaluated at 0. Doesn't that imply that the right side is essentially negligible/zero? Then how does one interpret this equation? The vacuum has zero energy?
No. The delta function is in the denominator! This is sloppy notation, What is meant is that after multiplication with the denominator, reinterpreting the formula in a distributional sense, and integration over a test function, the equation is valid in perturbation theory.
math-physicist said:
  • How does one derive Equation (4.56) starting from Equation (4.55) which states:
    $$ e^{\sum V_i}\propto e^{-2iE_0T}\ ? $$
This is a well-known combinatorial results for generating functionals, relating the moment generating function and the cumulant generating function. See https://en.wikipedia.org/wiki/Moment-generating_function#Relation_to_other_functions
 
  • Like
Likes   Reactions: math-physicist
@A. Neumaier , Thank you for your answer. Your answer to my first two questions makes sense. but in answer to my third question, you said:
A. Neumaier said:
This is a well-known combinatorial results for generating functionals, relating the moment generating function and the cumulant generating function. See https://en.wikipedia.org/wiki/Moment-generating_function#Relation_to_other_functions
I think you misinterpreted what I was asking. I meant to ask why does that proportionality imply the energy density relation? I.e.,
$$ e^{\sum V_i}\propto e^{-2iE_0T} \stackrel{\implies}{\rm{(Why??)}} \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
Could you please at least sketch the steps of this derivation? TIA.
 
math-physicist said:
@A. Neumaier , Thank you for your answer. Your answer to my first two questions makes sense. but in answer to my third question, you said:

I think you misinterpreted what I was asking. I meant to ask why does that proportionality imply the energy density relation? I.e.,
$$ e^{\sum V_i}\propto e^{-2iE_0T} \stackrel{\implies}{\rm{(Why??)}} \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
Could you please at least sketch the steps of this derivation? TIA.
One takes the logarithm in the left relation and applies the combinatorial result I stated to the expansion of the left hand side, which is the moment generating function.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K