Interpreting the energy density of QFT vacuum states

Click For Summary

Discussion Overview

The discussion revolves around the interpretation of the vacuum energy density in quantum field theory (QFT) as presented in Peskin-Schroeder's textbook. Participants are exploring the implications of specific equations related to vacuum states, energy definitions, and derivations of related expressions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants question the meaning of "relative to the zero of energy set by ##H_0|0\rangle = 0##" and its implications for vacuum energy.
  • There is a discussion about the delta function in the denominator of the vacuum energy density expression, with some arguing that it does not imply the right side is negligible or zero.
  • One participant suggests that the equation is valid in a distributional sense after proper interpretation and integration over a test function.
  • Participants seek clarification on how the proportionality between the generating functions relates to the vacuum energy density expression, with requests for a derivation sketch.
  • Another participant mentions that the logarithm of the left relation can be taken, applying a combinatorial result to expand the moment generating function.

Areas of Agreement / Disagreement

Participants generally agree on the interpretation of the first two questions regarding the energy zero condition and the delta function's role. However, there is disagreement on the derivation of the energy density relation from the proportionality of generating functions, with no consensus reached on the steps involved.

Contextual Notes

Some participants note that the discussion involves assumptions about the definitions of energy and the treatment of delta functions in QFT, which may not be universally accepted or clearly defined.

math-physicist
Messages
5
Reaction score
0
I am reading Peskin-Schroeder's QFT text, and there on pg. 98 Equation (4.56) they derive the expression for the vacuum energy density (relative to the zero of energy set by ##H_0|0\rangle = 0##):
$$ \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
My questions are:
  • What do they mean by "relative to the zero of energy set by ##H_0|0\rangle = 0##" ?
  • The right side of the above expression has a delta function evaluated at 0. Doesn't that imply that the right side is essentially negligible/zero? Then how does one interpret this equation? The vacuum has zero energy?
  • How does one derive Equation (4.56) starting from Equation (4.55) which states:
    $$ e^{\sum V_i}\propto e^{-2iE_0T}\ ? $$
 
Last edited:
Physics news on Phys.org
math-physicist said:
I am reading Peskin-Schroeder's QFT text, and there on pg. 98 Equation (4.56) they derive the expression for the vacuum energy density (relative to the zero of energy set by ##H_0|0\rangle = 0##):
$$ \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
My questions are:
  • What do they mean by "relative to the zero of energy set by ##H_0|0\rangle = 0##" ?
A Hamiltonian is defined only up to a constant energy shift. The condition fixes this constant by requiring that that the ground state (vacuum) has energy zero.
math-physicist said:
  • The right side of the above expression has a delta function evaluated at 0. Doesn't that imply that the right side is essentially negligible/zero? Then how does one interpret this equation? The vacuum has zero energy?
No. The delta function is in the denominator! This is sloppy notation, What is meant is that after multiplication with the denominator, reinterpreting the formula in a distributional sense, and integration over a test function, the equation is valid in perturbation theory.
math-physicist said:
  • How does one derive Equation (4.56) starting from Equation (4.55) which states:
    $$ e^{\sum V_i}\propto e^{-2iE_0T}\ ? $$
This is a well-known combinatorial results for generating functionals, relating the moment generating function and the cumulant generating function. See https://en.wikipedia.org/wiki/Moment-generating_function#Relation_to_other_functions
 
  • Like
Likes   Reactions: math-physicist
@A. Neumaier , Thank you for your answer. Your answer to my first two questions makes sense. but in answer to my third question, you said:
A. Neumaier said:
This is a well-known combinatorial results for generating functionals, relating the moment generating function and the cumulant generating function. See https://en.wikipedia.org/wiki/Moment-generating_function#Relation_to_other_functions
I think you misinterpreted what I was asking. I meant to ask why does that proportionality imply the energy density relation? I.e.,
$$ e^{\sum V_i}\propto e^{-2iE_0T} \stackrel{\implies}{\rm{(Why??)}} \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
Could you please at least sketch the steps of this derivation? TIA.
 
math-physicist said:
@A. Neumaier , Thank you for your answer. Your answer to my first two questions makes sense. but in answer to my third question, you said:

I think you misinterpreted what I was asking. I meant to ask why does that proportionality imply the energy density relation? I.e.,
$$ e^{\sum V_i}\propto e^{-2iE_0T} \stackrel{\implies}{\rm{(Why??)}} \frac{E_0}{\rm{Volume}} = \frac{i\,\sum\text{(all disconnected pieces)}}{(2\pi)^4\,\delta^4(0)}\ . $$
Could you please at least sketch the steps of this derivation? TIA.
One takes the logarithm in the left relation and applies the combinatorial result I stated to the expansion of the left hand side, which is the moment generating function.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K