In a previous thread, I asked a question different from that I actually intended to ask. Since this question is licit and was answered by micromass, I open this new thread.(adsbygoogle = window.adsbygoogle || []).push({});

The right question is in fact:

If R is an integral domain, and R' is INTEGRAL over R, then the function f which assigns to an ideal I' of R' the ideal I = I' ∩ R, sends surjectively the prime ideals of R' to the prime ideals of R, the maximal ideals of R' to the maximal ideals of R, and (not nessarily surjectively) a non prime ideal of R' to a non-prime ideal of R. [NOTE: THIS LAST CLAIM WAS PROVED TO BE FALSE IN THIS THREAD]

It would be nice if it could be proved that it sends SURJECTIVELY a non-prime ideal to a non-prime ideal, or equivalently, if it could be proved that f is a surjection from the set of ideals of R' to the set of ideals of R. But for the moment, I can only see that every ideal I of R is included in a maximal ideal of R'; the example of micromass in the previous thread does not fit here since Z_(2) is not integral over Z. Any ideas for a proof or a counter example ?

N.B: It is 2:00 in my country, so, I will react to possible rapid answers in several hours.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Intersection of an ideal with a subring (B)

**Physics Forums | Science Articles, Homework Help, Discussion**