MHB Interval for the Length of an Arc

ineedhelpnow
Messages
649
Reaction score
0
find the length of an arc of a helix r(t)=(sint,cost,t) from the point (0,2,0) to (0,5,2pi)

would the interval when integrating be from 0 to 2pi because t in the case is (z=t)? please say yes. please say yes.
 
Last edited:
Physics news on Phys.org
ineedhelpnow said:
find the length of an arc of a helix r(t)=(sin2t,cos2t,t) from the point (0,2,0) to (0,5,2pi)

would the interval when integrating be from 0 to 2pi because t in the case is (z=t)? please say yes. please say yes.

Yes.
 

Attachments

  • 09-16-2014 Image002.jpg
    09-16-2014 Image002.jpg
    11.2 KB · Views: 91
ineedhelpnow said:
really? is this right?

It would be right... but I'm only just now noticing that your function is not a helix.
How does it get to $y=5$? (Wondering)
 
ok ILS ima let you in on a little secret (i don't really remember the points. all i remember are the z coordinates 0 and 2pi) but it was a helix for sure. it was probably 5 instead of 2. i don't know i can't remember. i don't want to say i made them up but I am going to saaaaay improvised.
 
ineedhelpnow said:
ok ILS ima let you in on a little secret (i don't really remember the points. all i remember are the z coordinates 0 and 2pi)

Okay...
How about $r(t)=\left(\frac{3t}{2\pi}\sin(t),\ 2+\frac{3t}{2\pi}\cos(t),\ t\right)$?
 
what about it?
you would differentiate and pull out a common factor and simplify the sin and cos to 1. and then add the extra 1 and take the square root.
 
ineedhelpnow said:
what about it?
you would differentiate and pull out a common factor and simplify the sin and cos to 1. and then add the extra 1 and take the square root.

Did you really differentiate it?
How about the factor $t$ that is in both the x-coordinate and the y-coordinate (which is an integral part of a helix)?
 
factor it out before you differentiate.
 
  • #10
ineedhelpnow said:
factor it out before you differentiate.

Can you show that?

Edit: Perhaps I should say: you can't.
 
  • #11
why can't it be factored out? :confused:
 
  • #12
ineedhelpnow said:
why can't it be factored out? :confused:

I'm not entirely sure what you mean, but I'm going out on a limb and say: no, it can't be factored out.

What is the derivative of $t \cos t$?
 
  • #13
cos t - t*sin t
 
  • #14
ineedhelpnow said:
cos t - t*sin t

There you go!
No factoring out before the differentiation.
 
  • #15
ineedhelpnow said:
what about it?
you would differentiate and pull out a common factor and simplify the sin and cos to 1. and then add the extra 1 and take the square root.
:D soooo you can just do what i said earlier. by differentiating. pulling out a common factor of 3/2pi and---- oh i see what i did wrong. (Giggle) made a mistake with the differentiating part.
 
Back
Top