MHB Introducing General Vector Spaces: Engaging Examples and Real-Life Applications

matqkks
Messages
280
Reaction score
5
Students familiar with Euclidean space find the introduction of general vectors spaces pretty boring and abstract particularly when describing vector spaces such as set of polynomials or set of continuous functions. Is there a tangible way to introduce this? Are there examples which will have a real impact? I would like to introduce this in an engaging manner to introductory students. Are there any real life applications of general vector spaces?
 
Physics news on Phys.org
Well, the definition of general vector spaces is an abstraction from the usual properties of $\mathbb{R}^n$. I'm not sure what kind of "real life" applications you could show. Almost everything usually is described using linear algebra, but you need additional information and structures for it to become interesting, like linear maps, decomposition into subspaces, etc. I don't think there'll be a vector space that's all useful just by existence.
 
The best real-life applications of vector spaces of which I am aware are differential equations, especially Sturm-Liouville type. Introductory Quantum Mechanics spends a lot of time solving the Schrödinger equation, which in its non-relativistic time-independent form, is a self-adjoint eigenvalue problem. You set up basis vectors for the eigenspace, and then you write down your solution with Fourier analysis - as a sum of eigenvectors.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top