MHB Introducing Inner Product Spaces: Real-World Examples

matqkks
Messages
280
Reaction score
5
What is the most motivating way to introduce general inner product spaces? I am looking for examples which have a real impact. For Euclidean spaces we relate the dot product to the angle between the vectors which most people find tangible. How can we extend this idea to the inner product of general vectors spaces such as the set of matrices, polynomials, functions?
 
Physics news on Phys.org
matqkks said:
What is the most motivating way to introduce general inner product spaces? I am looking for examples which have a real impact. For Euclidean spaces we relate the dot product to the angle between the vectors which most people find tangible. How can we extend this idea to the inner product of general vectors spaces such as the set of matrices, polynomials, functions?

You can't do better than quantum mechanics and Hilbert space, which is a particular kind of inner product space. If you look at the hydrogen atom, for example, the Schrodinger equation is an eigenvalue problem. The eigenvectors are functions that live in a Hilbert space. You can use the Gram-Schmidt process to reduce the eigenvectors to an orthonormal basis, which is probably the most useful kind of basis. The Gram-Schmidt process makes use of the inner product extensively.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top