Invariance of Pauli-matrices under rotation

NewGuy
Messages
9
Reaction score
0
I'm trying to prove that the helicity operator \pmb{\sigma}\cdot\pmb{\hat{p}} is invariant under rotations. I found in Sakurai: Modern Quantum Mechanics page 166 that the Pauli matrices are invariant under rotations. Clearly that is sufficient for the helicity operator to be invariant under rotations. However I'm unable to prove that the Pauli matrices are invariant under rotations, and Sakurai states no proof. How would I prove this? I do know the fact that if U is the unitary matrix that represents rotation from n to n', then U(\pmb{\sigma}\cdot\pmb{n})U^\dagger=\pmb{\sigma}\cdot\pmb{n'}, however it doesn't seem to help.
 
Physics news on Phys.org
NewGuy said:
I'm trying to prove that the helicity operator \pmb{\sigma}\cdot\pmb{\hat{p}} is invariant under rotations. I found in Sakurai: Modern Quantum Mechanics page 166 that the Pauli matrices are invariant under rotations. Clearly that is sufficient for the helicity operator to be invariant under rotations. However I'm unable to prove that the Pauli matrices are invariant under rotations, and Sakurai states no proof. How would I prove this? I do know the fact that if U is the unitary matrix that represents rotation from n to n', then U(\pmb{\sigma}\cdot\pmb{n})U^\dagger=\pmb{\sigma}\cdot\pmb{n'}, however it doesn't seem to help.

I seem to remember of proving something similar. I'll dig up my QM notes and try to clear thing up, unless someone answers by the time I get to my office.
 
If you would that I would be very grateful :)
 
NewGuy said:
I'm trying to prove that the helicity operator \pmb{\sigma}\cdot\pmb{\hat{p}} is invariant under rotations. I found in Sakurai: Modern Quantum Mechanics page 166 that the Pauli matrices are invariant under rotations. Clearly that is sufficient for the helicity operator to be invariant under rotations. However I'm unable to prove that the Pauli matrices are invariant under rotations, and Sakurai states no proof. How would I prove this? I do know the fact that if U is the unitary matrix that represents rotation from n to n', then U(\pmb{\sigma}\cdot\pmb{n})U^\dagger=\pmb{\sigma}\cdot\pmb{n'}, however it doesn't seem to help.

I am sorry, but I will fail you too. What I did is to solve problem 1.3. from Sakurai where it is required to show that determinant of \pmb{\sigma}\cdot\pmb{n} is invariant under operation you quoted. I used 3.2.34, 35, 39 and 44.

Middle result of this solution that may help you is:

U(\pmb{\sigma}\cdot\vec{a})U^\dagger=\pmb{\sigma}\cdot (\vec{a} cos \phi + 2 \hat{n} (\hat{n} \vec{a}) sin^{2}(\phi /2) - (\hat{n} \times\vec{a}) sin \phi )

Where U is given by 3.2.44. Hope it helps to any amount, I wish you luck with your problem.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top