''Invariant mass of the electron and electron antineutrino''

  • Thread starter Coffee_
  • Start date
  • #1
Coffee_
259
2
1. A neutron decays into a proton, an electron and an electron antineutrino. In the frame of the neutron, the proton is in rest after decay. Calculate the ''invariant mass of the electron and electron antineutrino together''. The rest masses of the proton and neutrno are known


2. Conservation of energy, momentum and conservation of four momentum.

3. The problem is that I don't understand what is asked of me, are they asking for ##m_{e} + m_{v}##? If so, I start like this in natural units (h bar = 1 , c=1)

##m_{n}=m_{p} + E_{e} + E_{v}##

Plugging in the relativistic formulas for energy, and knowing that since the proton has no momentum the momenta of the electron and antineutrino have to be equal in size:

##\sqrt{p^{2}+m_{e}^{2}}+\sqrt{p^{2}+m_{v}^{2}}=m_{n}-m_{p}##

Seems like not enough info, hence I'm doubting I'm correctly interpreting the question.
 

Answers and Replies

  • #2
jbriggs444
Science Advisor
Homework Helper
11,166
5,747
They are asking for the "invariant mass of the electron and electron antineutrino together". That is, they are asking the invariant mass of a system consisting of those two particles. That is not the same thing as asking for the sum of the invariant mass of the electron of the electron anti-neutrino.
 
  • #3
Coffee_
259
2
They are asking for the "invariant mass of the electron and electron antineutrino together". That is, they are asking the invariant mass of a system consisting of those two particles. That is not the same thing as asking for the sum of the invariant mass of the electron of the electron anti-neutrino.

Is ## \sqrt{ (p_{e} + p_{v})^{2}}## the correct interpretation then? Where ##p_{e}## and ##p_{v}## represent the four momenta of the particles?
 
Last edited:
  • #4
jbriggs444
Science Advisor
Homework Helper
11,166
5,747
When it comes to four-momentum, I am out of my depth, and am working from first principles. But no, that does not appear to be the correct interpretation.

Edit: It looks correct now.

Go back to definitions. What is the definition of invariant mass of X? The norm of the four-momentum of X, right? So if X is a system consisting of two particles...
 
Last edited:
  • #5
Coffee_
259
2
When it comes to four-momentum, I am out of my depth, and am working from first principles. But no, that does not appear to be the correct interpretation.

Go back to definitions. What is the definition of invariant mass of X? The norm of the four-momentum of X, right? So if X is a system consisting of two particles...

Oh damn I messed up my squares being too qucik, here I fixed it. What about now?
 
  • #6
jbriggs444
Science Advisor
Homework Helper
11,166
5,747
Yes, that works.
 

Suggested for: ''Invariant mass of the electron and electron antineutrino''

  • Last Post
Replies
1
Views
2K
Replies
2
Views
3K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
2
Views
4K
Replies
5
Views
8K
Replies
14
Views
2K
  • Last Post
Replies
7
Views
6K
Replies
1
Views
10K
Replies
2
Views
10K
Replies
5
Views
772
Top