Inverse Functions & Newton's Method: Debmnzl's Question | Yahoo! Answers

Click For Summary
SUMMARY

The discussion focuses on finding the inverse of the function F(x) = a loge(x) + 1/2 and determining the value of 'a' such that the graphs of y = f(x) and its inverse touch at a single point. The inverse function is derived as f^{-1}(x) = e^{(2x-1)/(2a)}. Using Newton's method, the value of 'a' is approximated to 2.156, indicating that the contact point of the function and its inverse is (2.156, 2.156).

PREREQUISITES
  • Understanding of logarithmic and exponential functions
  • Familiarity with inverse functions
  • Knowledge of Newton's method for numerical approximation
  • Basic calculus concepts, including differentiation
NEXT STEPS
  • Study the properties of logarithmic and exponential functions
  • Learn about the graphical interpretation of inverse functions
  • Explore Newton's method in detail, including its convergence properties
  • Investigate the relationship between a function and its inverse in terms of tangency
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in understanding inverse functions and numerical methods for solving equations.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A math function question please help?

F(x) = a loge(x) + 1/2
Find the inverse which I found is e^x/a

It then said let a=2 and sketch graph which I did.

I'm getting trouble at this part

Find the value of a in 3 decimal places such that the graphs of y=f(x) and its inverse touch each other once only.

And hence find the contact point.

Please help explanations too please

Here is a link to the question:

A math function question please help? - Yahoo! Answers

I have posted a link there to this topic so that the OP may find my response.
 
Mathematics news on Phys.org
Hello Debmnzl,

We are given the function:

$\displaystyle f(x)=a\ln(x)+\frac{1}{2}$

and are asked to compute its inverse. So, we may begin by switching $x$ and $f(x)$, and then solving for $f(x)$ which will actually be $\displaystyle f^{-1}(x)$

$\displaystyle x=a\ln(f(x))+\frac{1}{2}$

Subtract through by $\displaystyle \frac{1}{2}$

$\displaystyle x-\frac{1}{2}=a\ln(f(x))$

Get common denominator on the left:

$\displaystyle \frac{2x-1}{2}=a\ln(f(x))$

Divide through by $a$:

$\displaystyle \frac{2x-1}{2a}=\ln(f(x))$

Convert from logarithmic to exponential form:

$\displaystyle e^{\frac{2x-1}{2a}}=f(x)$

and so we have:

$\displaystyle f^{-1}(x)=e^{\frac{2x-1}{2a}}$

Now, as a means of checking our work, we may use the fact that we require:

$\displaystyle f\left(f^{-1}(x) \right)=f^{-1}(f(x))=x$

i) $\displaystyle f\left(f^{-1}(x) \right)=a\ln\left(e^{\frac{2x-1}{2a}} \right)+\frac{1}{2}=a\left(\frac{2x-1}{2a} \right)+\frac{1}{2}=x$

ii) $\displaystyle f^{-1}(f(x))=e^{\frac{2\left(a\ln(x)+\frac{1}{2} \right)-1}{2a}}=e^{\frac{2a\ln(x)}{2a}}=e^{\ln(x)}=x$

So, we know the inverse function we found is correct.

Next, we are instructed to let $a=2$ and sketch the graph. I will assume we are to graph both the given function and its inverse:

View attachment 613

Now, to find a value of $a$ such that the function and its inverse touch only once, we may use the fact that the two are reflected about the line $y=x$, and so must be tangent to this line.

The gradient of the line $y=x$ is 1, and so, we require:

$\displaystyle \frac{d}{dx}\left(f(x) \right)=\frac{a}{x}=1\,\therefore\,a=x$

$\displaystyle \frac{d}{dx}\left(f^{-1}(x) \right)=\frac{e^{\frac{2x-1}{2a}}}{a}=1\,\therefore\,a=e^{\frac{2x-1}{2a}}$

Now since we found $a=x$ we may write:

$\displaystyle a=e^{\frac{2a-1}{2a}}$

To compute the solution to this equation to 3 decimal places, we may use Newton's method. Let's define:

$\displaystyle g(a)=e^{\frac{2a-1}{2a}}-a=0$

where:

$\displaystyle g'(a)=\frac{1}{2a^2}e^{\frac{2a-1}{2a}}-1$

Newton's method gives us the recursion:

$\displaystyle a_{n+1}=a_n-\frac{g(a_n)}{g'(a_n)}$

Using the function we defined and its derivative, we have:

$\displaystyle a_{n+1}=a_n-\frac{e^{\frac{2a_n-1}{2a_n}}-a_n}{\frac{1}{2a_n^2}e^{\frac{2a_n-1}{2a_n}}-1}=\frac{a_n(1-2a_n)}{1-2a^2e^{\frac{1-2a_n}{2a_n}}}$

Using $a_0=2$ as our initial estimate, we then find:

$a_1\approx2.15910252177$

$a_2\approx2.15553677378$

$a_3\approx2.1555352035$

$a_4\approx2.1555352035$

Now, since we were only asked to find the estimate to 3 decimal places, we would write:

$a\approx2.156$

and since we found $a=x$ then the $y$-coordinate of the point of intersection must also be $a$ since the function and its inverse will touch along the line $y=x$

And so the point of intersection is approximately (2.156,2.156). Here is a graph using the better approximation we found:

View attachment 614
 

Attachments

  • debmnlz.jpg
    debmnlz.jpg
    6.5 KB · Views: 111
  • debmnlz2.jpg
    debmnlz2.jpg
    7.6 KB · Views: 105

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
5K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K