Ionization energy calculations

Click For Summary
SUMMARY

The ionization energy (IP) of an electron is defined as the energy difference between an atom and its ionized cation, expressed as IP = E(A) - E(A+). For multi-electron atoms, the simplistic model of electrons occupying discrete energy levels fails due to significant electron-electron repulsions. Effective nuclear charge (Zeff) and quantum defects are used to account for these interactions, but they are approximations. Accurate calculations of ionization energy must consider the changes in electron-electron repulsion when one electron is removed from the atom.

PREREQUISITES
  • Understanding of ionization energy and its definition.
  • Familiarity with the concept of effective nuclear charge (Zeff).
  • Knowledge of electron-electron repulsion in multi-electron systems.
  • Basic principles of quantum mechanics as they relate to atomic structure.
NEXT STEPS
  • Research the calculation methods for effective nuclear charge (Zeff) in multi-electron atoms.
  • Study the concept of quantum defects and their implications in atomic physics.
  • Explore advanced ionization energy calculations using quantum mechanical models.
  • Investigate the role of electron shielding in determining atomic properties.
USEFUL FOR

Chemists, physicists, and students studying atomic structure and ionization processes, particularly those focusing on multi-electron systems and electron interactions.

fsci
Messages
6
Reaction score
0
Why isn't the ionization energy of an electron equal to it's energy level such that:
E(electron)= -13.6(Z^2/n^2) = IP for that electron
But instead it is equal to the energy difference in energy between the atom and its ionized cation:
IP = E(A)-E(A+)
 
Physics news on Phys.org
fsci said:
Why isn't the ionization energy of an electron equal to it's energy level such that:
E(electron)= -13.6(Z^2/n^2) = IP for that electron
But instead it is equal to the energy difference in energy between the atom and its ionized cation:
IP = E(A)-E(A+)

For a hydrogen atom, this would be true (ignoring for the moment, things like the Lamb shift, etc.)

The problem with multi-electron atoms is that the "truth" is that the picture of electrons sitting in discrete energy levels given by the equation that you have above is not right. The primary problem is that electron-electron repulsions are present and are not insignificant. Imagine that you have a two-electron atom. How many electron-electron repulsions do you have to consider? You could apportion this interaction energy (50:50) to the two electrons to calculate an effective energy level for each electron. But when you ionize one electron, what happens to this interaction? The "energy level" of the remaining electron changes, too, no?

Chemists play all sorts of games to take into account the effect of electron-electron interactions. You will see things like Zeff (an effective nuclear charge) discussed. In other contexts, you will see fudge factors on "n" called a "quantum defect" -- where have I seen that before... no matter.

The ionization energy is, by definition, equal lto the energy required to ionize the atom, which is the Delta E for:

A ----> A+ + e-
 
Quantum Defect said:
For a hydrogen atom, this would be true (ignoring for the moment, things like the Lamb shift, etc.)

The problem with multi-electron atoms is that the "truth" is that the picture of electrons sitting in discrete energy levels given by the equation that you have above is not right. The primary problem is that electron-electron repulsions are present and are not insignificant. Imagine that you have a two-electron atom. How many electron-electron repulsions do you have to consider? You could apportion this interaction energy (50:50) to the two electrons to calculate an effective energy level for each electron. But when you ionize one electron, what happens to this interaction? The "energy level" of the remaining electron changes, too, no?

Chemists play all sorts of games to take into account the effect of electron-electron interactions. You will see things like Zeff (an effective nuclear charge) discussed. In other contexts, you will see fudge factors on "n" called a "quantum defect" -- where have I seen that before... no matter.

The ionization energy is, by definition, equal lto the energy required to ionize the atom, which is the Delta E for:

A ----> A+ + e-

Ahhhhhhh, that makes more sense now, thanks a ton!
So if I were to calculate E(A+) for the cation using the new Zeff values for the remaining electrons I am basically accounting for the decrease in electron-electron repulsion due to one less electron? And using IP= -13.6eV (Zeff^2/n^2) for the ionized electron does not make sense because it assumes there is no change in energy in the cation even though electron-electron repulsion has decreased?
 
fsci said:
Ahhhhhhh, that makes more sense now, thanks a ton!
So if I were to calculate E(A+) for the cation using the new Zeff values for the remaining electrons I am basically accounting for the decrease in electron-electron repulsion due to one less electron? And using IP= -13.6eV (Zeff^2/n^2) for the ionized electron does not make sense because it assumes there is no change in energy in the cation even though electron-electron repulsion has decreased?

I think that sometimes people calculate a Zeff from the IP, but remember that all of this is a fudge to take into account electron-electron repulsions. It is useful, to some extent, to compare the "shielding" provided by electrons -- Inorganic Chemistry textbooks sometimes talk about ways to estimate what Zeff is based upon the electron configuration. These are all pretty crude approximations.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
782
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K